
Building a Fast Parallel Cluster Computer Using Slow PCs
Jovan Andjelich, Sean Dockery, Meghan Allen, Nick Hushebeck, Dr. Akhtar Mahmood and Dr. Faiz Ahmad (Bellarmine University)

Abstract
We have built two fast cluster computing systems (called Sphinx-1 and Sphinx-2) using slow PCs using the

Fedora Core-3 Linux operating system, and the LAM-MPI (Message Passing Interface) parallel processing

middleware for carrying out the various scientific calculations. The MPI middleware is suitable for data-

parallel, task-parallel, and coarse-grain data flow programming and supports random or sequential access to

any integral set of data items. The cluster is based on a multi-computer architecture which can be used for

parallel computations. The cluster consists of one server node, and several client nodes connected together

via a 100Mbps Ethernet network switch. The server node controls the whole cluster and serves files to the

client nodes. Cluster computers are one of the new platforms that are at the forefront in the computational

arena. A Parallel Cluster computing concept is at the boundary between the notion of a tightly coupled

parallel computer and a distributed cluster system. The idea is to speed up the execution of a program by

aggregating computing power across nodes to solve a problem faster (by spreading the computation across

the nodes of the cluster using message passing to communicate between the cluster’s nodes). Theoretically

speaking, a program being executed across n processors might execute n times faster than it would by using

a single processor. Our goal was to build a single computer system, a cluster, with multi-tasking capabilities

having the manageability of one computer with the performance of the sum of its components. We will

present the computational results obtained from our Sphinx-1 Beowulf Cluster.

Introduction and Methodology
High performance computing is undergoing a fundamental transition. Parallel Cluster computers are

increasingly being used not only in the scientific research arenas, but also in commerce and industry.

Additionally, Parallel Cluster computers are not only being used for high-performance computation, but

increasingly as a platform to provide services for applications such as web, grid and cloud servers. One

important applications of high performance cluster computers is the handling of large datasets. Data-

intensive research fields such as High Energy Physics has become increasingly dependent on cluster

computers for various monte-carlo simulation and data analysis tasks for extracting “rare” signals from

enormous backgrounds involving large datasets.

Clusters can be of multiple flavors; one that is of interest to us is called the Beowulf cluster. Beowulf is a

class of cluster computing systems built with cost-effective hardware commodity items, an operating system

(e.g. LINUX), parallel processing libraries and middleware (e.g. MPI), and other utilities. The Beowulf cluster

can provide a highly flexible distributed memory-based computing environment. The goal is to speed up the

execution of a program by aggregating computing power across nodes to solve problems faster (by using

message passing to communicate between the nodes).

In a Beowulf cluster, all the nodes are dedicated to the cluster, and function as one system to process a job.

This helps ease load-balancing problems, since the performance of individual nodes are not subject to

external factors. The Beowulf cluster-system usually consists of one server node, and several client

(compute) nodes connected together via fast network switch. Since parallel clusters must pass information

between nodes, high-speed inter-connectivity is a critical component of the cluster. In a Beowulf cluster, one

server node controls the whole cluster. This server node is the cluster’s console for compiling the source

code, starting parallel jobs and is the only access point to and from the outside world, and is basically the

“brains of the operation”.

The main server is configured to serve file systems to the client nodes. Each client node has a private IP

(Internet Protocol) address, thus the cluster interconnections are not “visible” to the outside world. All access

to the client nodes is done via the server node. Server node consists of two network cards. One of them has

a “global” IP address which connects the server to the internet and the other network switch is connected to

the local network switch to communicate with the client nodes. Usually the server node has a monitor, video

card, keyboard, mouse, and CD-ROM; the client nodes do not have these peripherals. It can get very hectic

to switch keyboard, mouse and monitor between each client in order to install the operating system or doing

some of the early troubleshooting. So, keeping this in mind, we decided to implement a KVM switch

(abbreviation for Keyboard, Visual display, and Mouse) for our cluster which allows us to use a single

keyboard, mouse and monitor across all the nodes including the server node.

Beowulf clusters are highly scalable, and their “parameters” can be tuned to improve the system’s overall

“parallel” performance, by evaluating the ratio of communication time/processing time. We ensured that the

memory performance is optimized so that each client node is able to exchange data rapidly with the other

client nodes. A critical aspect of a Beowulf cluster, which determines its performance, is the underlying

switch fabric connecting the nodes. In a Beowulf Cluster, a process on one client node can send signals to a

process on another client node, all within the user domain. The nodes must then be tuned to provide better

throughput for coarser-grain jobs (where processes may perform millions of operations between

communication events), because they are not interacting directly with the users.

A word of Caution: Not all applications will run effectively on a Beowulf Cluster. If a segment of a code runs

for less time than it takes to transmit its result value (i.e. latency), executing that code segment serially on

one node would be faster than using multiple nodes, where serial execution would avoid the communication

overhead. In a cluster, the time required to move data between nodes is critical to the system’s performance

and parallel processing. Achieving low latency requires efficient communication protocols, message size,

and host network interfaces that minimize the communication overhead. A key factor in predicting the code

performance is the amount of inter-processor communication involved. We can calculate the average
Message-Passing Time and Message Size for the Beowulf cluster using the following equation:

 Message Communication Time = (Latency Time) + (Size/Bandwidth)

Message Size = (Bandwidth) x (Latency Time)

Cluster Middleware: The Message Passing Interface (MPI) is a set of middleware functions that enable

programs to pass messages between processes of a parallel job. It has become common to use PC clusters

as a single parallel computing resource running MPI programs. The MPI was designed to support portability

and platform independence. MPI is a collection of library routines that consists of a header file, a library of

routines and a runtime environment that provides interaction/message-passing and related operations

between processors with a parallel system to enable parallel computation. MPI can be used in the Fortran, C

and C++ programming languages.

Currently at least two implementations of MPI exists. Both allow MPI programs to be executed across a

cluster of Linux systems using UDP/TCP socket communication:

LAM-MPI (Local Area Multicomputer) – MPI 1.1 / 2.0 Standard - Developed by Ohio State University

MPICH (MPI CHameleon) – MPI 1.1 / 2.0 Standard – Developed by Argonne National Laboratory.

We have chosen to use LAM-MPI as the Message Passing Interface. LAM is a MPI programming

environment and development system for heterogeneous computers on a network. With LAM, a dedicated

cluster or an existing network computing infrastructure can act as one parallel computer solving one problem.

LAM features extensive debugging support in the application development cycle and peak performance for

production applications. LAM features a full implementation of the MPI communication standard.

LAM-MPI is a high-performance, freely available, open source implementation of the MPI standard that is

maintained at the Open Systems Lab at Indiana University. LAM-MPI is the middleware that implements the

LAM run-time environment that provides many of the services required by MPI programs.

Figure 1. Schematics of the Sphinx-1 Beowulf Cluster.

INTERNET

Server Node:

n1.phys.bellarmine.edu

10.1.0.2

(Global IP Address–eth1)

172.16.0.1

(Local IP Address-eth0)

Client Node 2:
n3.phys.bellarmine.edu

172.16.0.3

100 Mbps

Client Node 1:
n2.phys.bellarmine.edu

172.16.0.2

Client Node 3:
n4.phys.bellarmine.edu

172.16.0.4

Client Node 4:

n5.phys.bellarmine.edu

172.16.0.5

Client Node 5:
n6.phys.bellarmine.edu

172.16.0.6

Client Node 6:
n7.phys.bellarmine.edu

172.16.0.7

Client Node 7:

n8.phys.bellarmine.edu

172.16.0.8

 100 Mbps

12-port Cisco
2900XL

100 Mbps Switch

 100 Mbps

24-port D-Link
DES - 2026G

1Gbps Switch

 1Gbps

 1Gbps

Server and Client Nodes:
Model: IBM Netvista MT-M 8307

Processor: Pentium IV - 1.6 GHZ

Memory (RAM): 1 GB

Hard Disk Space: 40 GB

OS: Linux Fedora-Core3

Middleware: LAM-MPI

Sphinx-1 Cluster Specs for 8 Nodes

Total Performance – 13 Gflops

Combined RAM – 8 GB

Combined Hard Disk – 320 GB

Conclusion and Future Plans

Figure 5. That’s Jovan posing with both the Sphinx-1 and Sphinx-2 Clusters.

As evident from our results, using the Sphinx-1 cluster, we were able to reduce the computation time of our parallel MPI codes by spreading the computation

across the nodes of the cluster using the message passing middleware MPI to communicate between all the nodes. As expected, we have demonstrated

that using the MPI middleware, all the three parallel codes ran faster as we added more nodes. Also, as evident from graphs 15 – 17, the speed-up factor

graphs (i) for the Particle parallel code, we were able to speed up the computation time with 8 nodes (compared to 1 node) anywhere from 2 to 17 times

(depending on the number of simulated particles); (ii) for the Pi parallel code, we were able to speed up the computation time with 8 nodes (compared to 1

node) anywhere from 8 to 24 times (depending on the number of partitions); and (iii) for the parallel Trapezoid Method code, we were able to speed up the

computation time with 8 nodes (compared to 1 node) anywhere from 7.5 to 32 times (depending on the number of partitions). We noticed that latency (inter-

node communication time) played a critical role in our parallel computations as we added more nodes.

In this research project, we implemented data mining techniques using bash scripting and developed the capability of extracting useful information from the

computational data. We carried out performance measurements and latency studies using different network switches (100Mbps vs. Gigabit Ethernet). We did

not see any gains when we used a 1Gbps switch over of the 100Mbps switch since we were using the same 100Mbps Network Interface Card (NIC) in all our

nodes. Therefore, we would not expect any gains in the speed-up factor without a 1Gbps network card inside all the compute nodes. For all three parallel

codes, we have also extrapolated the computation time for nodes 9 to 14 (see graphs 12 - 14) in order to predict the trend in computation time, and to

determine the best possible computation time without adding additional nodes. We determined the optimal number of nodes necessary to run parallel jobs

efficiently is about 14, since the computation time tends to level off after about 14 nodes (as evident from graphs 12 - 14). So, adding more nodes beyond 14

will not further reduce the computation time, hence no gains is expected in the speed-up factor. Therefore, based on our studies, we have determined that

the number of nodes that maximizes the efficiency of the Sphinx-1 cluster is 14. We are currently running the same three parallel codes on nodes 9 to 14 of

the Sphinx-1 cluster in order to determine how well our expected extrapolated computation time matches with the actual computation time for nodes 9 to 14.

Our next goal is to conduct all our computational studies with the Sphinx-2 cluster with the three parallel codes and then compare the Sphinx-2 cluster

studies with the Sphinx-1 cluster results. Acknowledgement
We would like to thank Earle Foskett, our Systems/Network Manager for assisting us in this project. We would also like to thank BU’s former IT Director,

Fred Lassiter for donating the old PCs that was used for our studies in this research project.

Parallel Programs Studied in This Research Project

 First Program (Particle Simulation): This program simulates up to 4000 particles using the Monte-Carlo Method.

 Second Program (Calculating Pi): This program calculates the value of Pi (), by integrating the function f(x) = 4.0/(1.0 + x2) using n partitions. It then

compares the result up to 25 decimal place with the known value of Pi and determines the error of the calculated value of .

 Third Program (Parallel Trapezoidal Method): This Trapezoid Method program integrates the function f(x) =1/x from a (100) to b (1000000) using n
partitions.

Figure 6. shows a bar chart of the Particle code’s

computation time vs. the number of nodes for

1000 - 4000 Monte-Carlo generated particles.

Hardware Components: PC Nodes, Network and KVM Switch

Figure 3. Picture of the Sphinx-1 Beowulf Cluster in Pasteur 209.

Figure 4. Picture of the Sphinx-2 Beowulf Cluster in Pasteur 209.

12 PORT 100Mbps ETHERNET SWITCH (Model: Cisco 2900XL)

Figure 2. Shows pictures of the 100 Mbps and 1Gbps network switches and the

16-port KVM switch used to build the Sphinx-1 cluster.

24 PORT 1Gbps NETWORK SWITCH (Model: D-Link DES-1026G)

16 PORT KVM SWITCH (Model: D-Link DKVM-16E)

Bash Scripting to Automate the Job Processes in a Beowulf Cluster: We also wrote a bash script for all our parallel jobs. Bash is a command processor that

allows the user to type commands for performing tasks that are frequently done by the user. Bash can also read commands from a file, called a script. Scripts can

be organized to efficiently run the programs and to generate the data in such a way as to facilitate analysis of the data using tools such as Excel. Without a script,

recording individual data sets for each calculation can be a very tedious process. Taking these data sets and finding ways to analyze this data in an organized

fashion can be even more tedious. Scripts can automatically run a job that could take days to run. Scripts can be adjusted to different situations with minor
changes in coding.

Results

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8

S
p

e
e

d
-u

p
 F

a
c

to
r

of Nodes

Particle Code: Speed-Up Factor for 1500 – 4000 Simulated
Particles Using 1-8 Nodes

1500

2000

2500

3000

3500

4000

 # of Particles

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

S
p

e
e

d
-u

p
 F

a
c

to
r

of Nodes

Trapezoid Method Code: Speed-Up Factor for 500 Million, 1 Billion,
and 5 Billion Partitions Using 1-8 Nodes

n=5x10^8

n=10^9

n=5x10^9

of Partitions

Figure 17. shows a graph of the speed-up factor of the Trapezoid Method

code using 1-8 nodes for 500 million, 1 billion, and 5 billion partitions.

0

5

10

15

20

25

1 2 3 4 5 6 7 8

S
p

e
e

d
-u

p
 F

a
c

to
r

of Nodes

Pi Code: Speed-Up Factor for 1 Billion to 2.14 Billion Partitions
Using 1-8 Nodes

1,000,000,000

1,250,000,000

1,500,000,000

1,750,000,000

2,000,000,000

2,140,000,000

of Partitions

Figure 16. shows a graph of the speed-up factor of the Pi code using 1-8

nodes for 1 billion to 2.14 billion partitions.

Figure 15. shows a graph of the speed-up factor of the Particle code

using 1-8 nodes for 1000 to 4000 simulated particles.

0

2

4

6

8

10

12

14

16

18

20

1000 1500 2000 2500 3000 3500 4000

T
im

e
 (

s
)

of Particles

Bar Chart of Particle Code’s Computation Time
Using 1-8 Nodes for 1000 - 4000 Simulated Particles

1

2

3

4

5

6

7

8

of Nodes

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8

T
im

e
 (

s
)

of Nodes

Particle Code’s Computation Time vs. Number of
Nodes for 1000 – 4000 Simulated Particles

1000

1500

2000

2500

3000

3500

4000

of Particles

Figure 9. shows a graph of the Particle code’s

computation time vs. the number of nodes for

1000 - 4000 particles.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
 (

s
)

of Nodes

Particle Code’s Computation Time vs. Number of Nodes for 1000 –
4000 Simulated Particles Extrapolated for Nodes 9 – 14.

1000

1500

2000

2500

3000

3500

4000

of Particles

Figure 12. shows a graph of the Particle code’s extrapolated computation time

from node 9 to 14 for 1000 - 4000 particles.

0

5

10

15

20

25

30

35

40

T
im

e
 (

s
)

of Partitions

Bar Chart of Pi Code’s Computation Time Using
1-8 Nodes for 1 Billion to 2.14 Billion Partitions

1

2

3

4

5

6

7

8

of Nodes

Figure 7. shows a bar chart of the Pi code’s

computation time vs. the number of nodes for

1 billion to 2.14 billion partitions.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

T
im

e
 (

s
)

of Nodes

Pi Code’s Computation Time vs. Number of Nodes
 for 250 Million - 2.14 Billion Partitions

250,000,000

500,000,000

750,000,000

1,000,000,000

1,250,000,000

1,500,000,000

1,750,000,000

2,000,000,000

2,140,000,000

of Partitions

Figure 10. shows a graph of the Pi code’s

computation time vs. the number of nodes for

250 million – 2.14 billion partitions.

Figure 13. shows a graph of the Pi code’s extrapolated computation time

from node 9 to 14 for 250 million to 2.14 billion partitions.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
 (

s
)

of Nodes

Pi Code’s Computation Time vs. Number of Nodes for
100 Million to 2.14 Billion Partitions Extrapolated for Nodes 9 – 14.

250,000,000

500,000,000

750,000,000

1,000,000,000

1,250,000,000

1,500,000,000

1,750,000,000

2,000,000,000

2,140,000,000

of Partitions

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
 (

s
e

c
)

of Nodes

Trapezoid Method Code’s Computation Time vs. Number of Nodes for
500 Million, 1 Billion, and 5 Billion Partitions.

a: 10^2, b: 10^7, n: 5*10^8

a: 10^2, b: 10^7, n: 10^9

a: 10^2, b: 10^7, n: 5*10^9

Figure 14. shows a graph of the Trapezoid Method code’s extrapolated

computation time from node 9 to 14 for 500 million, 1 billion, and 5 billion

partitions, between the intervals 100 and 10,000,000.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

T
im

e
 (

s
e

c
)

of Nodes

Trapezoid Code’s Computation Time vs. Number of
Nodes for 500 Million, 1 Billion and 5 Billion Partitions

a: 10^2, b: 10^7, n: 5*10^8

a: 10^2, b: 10^7, n: 10^9

a: 10^2, b: 10^7, n: 5*10^9

Figure 11. shows a graph of the Trapezoid Method

code’s computation time vs. the number of nodes for

 500 million, 1 billion, and 5 billion partitions.

Figure 8. shows a bar chart of the Trapezoid Method

code’s computation time vs. the number of nodes for

500 million, 1 billion, and 5 billion partitions, between

the intervals 100 and 10,000,000.

0

5

10

15

20

25

30

35

40

a: 10^2, b: 10^7, n:

5*10^8

a: 10^2, b: 10^7, n: 10^9 a: 10^2, b: 10^7, n:

5*10^9

T
im

e
 (

s
)

of Partitions

Bar Chart of Trapezoid Method Code’s
Computation Time Using 1-8 Nodes for
500 Million, 1 Billion and 5 Billion Partitions

1

2

3

4

5

6

7

8

of Nodes

http://www.lam-mpi.org/

