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ABSTRACT
NASA is embarking on a bold mission to detect extra-solar Earth-like planets. By 2015 NASA will 

launch its most sophisticated next generation space-based SIM-Lite (Space Interferometry Mission) 

Observatory to search for Earth-like terrestrial planets in the habitable zone orbiting the nearby stars, 

located within 33 light-years. SIM-Lite will be the first space-based long baseline Michelson 

interferometer designed for precision astrometry with one micro-arcsecond (one billionth of a degree) 

accuracy. Finding Earth-like rocky planets is extremely challenging since Earth-like planets are small 

by comparison and are relatively close to their bright stars. An Earth-sized planet will be so close to 

the much brighter star that they are almost impossible to tell apart. Optical interferometry using new 

astrometric techniques can be used to detect Earth-like planets. An Earth-like planet will typically 

reveal their presence by small effects they have on their star. SIM-Lite instrument’s ultra-precise 

resolution and sensitivity will detect the tiny wobble of a distant star being tugged by an orbiting extra-

solar planet to within 20 pico-meters (a distance that is about 10 times smaller than an atom). We are 

currently working on the SCDU (Spectral Calibration Development Unit) testbed at JPL to determine 

how well we can make these ultra precise astrometric measurements. Using MATLAB, we have been 

working on a new wavefront reconstruction technique using the Misell algorithm to determine the 

instrument's optical performance. We will present the current results of our study. This research work 

is being funded by NASA's KSGC (Kentucky Space Grant Consortium) program.

INTRODUCTION AND METHODOLOGY
The SIM-Lite satellite (Figure 4) uses interferometry to measure movements of stars to a precision of 

one microarcsecond.  Light from an observed star is diffracted by lenses and mirrors in the satellite to 

obtain the interference patterns necessary for this precision.  Fourier transform methods are the 

principle tool to evaluate diffraction and interference of light waves.  We have learned about and 

developed our ability to evaluate wavefronts of light using the mathematical and computer based 

techniques of Fourier analysis.

A HeNe laser with parallel, monochromatic light waves and having little divergence of its wavelets 

(which consist of many photons with the same phase and direction in a very small plane wave) is 

diffracted by a parabolic mirror onto a CCD camera which reproduces its image in 4 micron pixels on 

a computer screen.  This experimental setup is used as a model which ultimately can be used as a 

tool to study the optics of SIM-Lite.  Mathematically, the wavefront of the laser is modeled as a 

constant amplitude, radially symmetric, circular wavefront.  Diffraction by the parabolic mirror 

produces an interference pattern in the focal plane of the lens.  Aberrations in the mirror, or in a lens 

in the beam's path, will distort this ideal beam and its diffraction pattern and produce irregularities 

which are detected in the experimental images and which can be evaluated mathematically.  

When a light wave is diffracted by a small aperture (or a parabolic mirror or lens), the amplitude of a 

point [U(x, y)] in the diffraction plane is defined by the Fraunhofer diffraction equation (which is a 

Fourier transform describing diffraction in far space), and these points can be assembled by a 

computer into a map of amplitude across all points in a diffraction plane.  The Fraunhofer diffraction 

equation is 

where (x and y) are in the diffraction plane, (ξ and η) are in the aperture plane, (z) is a normal line 

between the planes, is an aperture function of  the amplitude of a light wave's electrical field, and (λ) 

is the wavelength of the monochromatic laser.

is the elementary Fourier function which defines the frequency and direction of 

"frequency space"; because frequency and direction are defined in this way, the # of radians between 

points across the aperture (ξ,η) and the point being evaluated in diffraction space (x,y) can be 

precisely calculated.  The terms outside the integral are constants and account for phase delays in 

the diffraction plane due to the normal divergence of photons in a wavefront.  If diffraction is 

evaluated between confocal spherical mirrors, separated by exactly the right distance,                  the 

term disappears; this term accounts for the Huygens-Fresnel secondary wavelets which diverge 

parabolically, but not spherically as they predicted. [U(x, y)] is the value of this transform at a single 

point in the diffraction plane. For symmetric circular apertures, a Fourier transform can be simplified 

by using polar coordinates.  If a circular aperture is symmetric, g(r, θ) = g(r) and the Fourier 

transform of an aperture can be described as

in which J0 is a Bessel function of zero order, (ρ) is the radius for the circle of interest in the

diffraction plane which is defined in terms of spatial frequency, (r) is the radius for the variable circle

undergoing integration across the aperture, g(r) is the aperture function, G(ρ) is the Fourier transform

for a single circle in the diffraction plane. J0(2πrρ) is the elementary function which defines the

frequency of diffraction space in the same way that                     does this for rectangular 

coordinates. This function is called the Fourier-Bessel transform which is abbreviated as β[g(r)]. The 

circ(r) function defines a uniform, monochromatic wavefront with unit amplitude passing through a 

circular aperture.                                     in which J1 is a Bessel function of the first order.  The 

numerical values for the zero and first order Bessel functions are available in handbooks and so a 

polar Fourier transform greatly simplifies a transform's solution.  Applying β[circ(r)] to the Fraunhofer

integral requires several mathematical adjustments but the result for the intensity of the light pattern 

in the diffraction plane is simply                                  in which (r) now is the circular radius in the 

diffraction plane, (w) is the radius of the aperture, A = πw2 is the area of the aperture, (λ) is the 

wavelength of the monochromatic light, (z) is the distance of a normal line between the aperture and 

diffraction planes, (k) is the wave number which equals (2π/λ). All of these terms, including J1 are 

numbers most of which have units, and all are readily available. The photo on the Rt. is an Airy 

pattern of Fraunhofer diffraction from a circular aperture.

RESULTS
Explanation of Misell Algorithm
The Misell Algorithm (Figure 3) begins with a Gaussian beam profile created on a pupil (Figure 1) 

shown in box 1. This profile is then subjected to wavefront error using high order Zernike polynomials. 

Box 2 shows the absolute value of this wavefront error returns to the original beam. Box 3 shows the 

complex components of the wavefront error.  The Fourier transform of the pupil is taken, and the 

complex components are displayed in box 4. Boxes 1-4 serve as an expected wavefront error that 

could be seen in the testbed. Subsequent steps will estimate this error mathematically. Box 5 begins 

with the same original beam profile. Boxes 6 and 7 show the Fourier propagation of this beam 1 mm 

on both sides. The inverse Fourier transform is then taken of these images and the resulting images 

for 6 and 7 are shown in boxes 8 and 9 respectively. These images are then filtered using parameters 

shown in box 10. Box 11 is a cross-sectional view of box 10 showing the sharp drop in the filter. The 

final estimate of box 3 is then shown in box 12.

The Misell Algorithm (Figure 8) also begins with a Gaussian beam profile (box 1), but this beam more 

closely resembles the actual light of the SCDU testbed. This profile is then subjected to wavefront

error using high order Zernike polynomials. Box 2 shows the absolute value of this wavefront error 

returns to the original beam. Box 3 then shows the complex components of the wavefront error.  The 

Fourier transform of the pupil is taken, and the real components are displayed in box 4 while the 

complex components are shown in box 5. Now boxes 1-5 serve as the expected wavefront error 

possible in the testbed. Box 6 begins the estimates of the wavefront error starting with the same beam 

profile. Box 7 shows the Fourier propagation of this beam 0.4 mm in front of the pupil. The inverse 

Fourier transform is then taken of box 7 and displayed in box 8. This image is then filtered using 

parameters shown in box 9. Box 10 is a cross-sectional view of box 10 showing a much broader drop 

in the filter. The final estimate of box 3 is then shown with the complex components in box 11 and the 

absolute value shown in box 12.
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Figure 1. A Circular Pupil was created with a center 

aperture. This simulated the collimated beam seen in the 

test bed

Zern_0_0

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Zern_1_1

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_1_neg1

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Zern_2_2

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_2_neg2

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_2_0

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Zern_3_3

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_3_neg3

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_3_1

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Zern_3_neg1

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_4_4

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_4_neg4

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Zern_4_2

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_4_neg2

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Zern_4_0

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2. Using the Pupil created in Figure 1 

Zernike Polynomials from 0 to 4 were displayed on 

the pupil at all corresponding frequencies. Zernike 

polynomials are important functions as they help to 

describe optical wavefront error. 
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Figure 3. First Misell Algorithm with one Fourier 

propagation from image plane and a sharp filter

pupil

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

abs(E_pup_act)

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

real(E_pdf_act)

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

-60

-40

-20

0

20

40

60

80

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

E_pup_est

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x freq, cyc/ap

y
 f

re
q
, 

c
y
c
/a

p

 

 

-40 -30 -20 -10 0 10 20 30

-40

-30

-20

-10

0

10

20

30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-40 -30 -20 -10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x frequency, cycles/aperture

abs(E_pup_est)

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 8. Refinement of initial Misell algorithm. 

Propagation from image plane with a broad filter. 
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Figure 9. Detector intensities from camera (right) 

starting at the focus (right box 1) and moving back 1 

mm per step. Mathematical manipulation (left) of 

focus intensity to generate images in 1 mm 

increments away from the focus.
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Figure 4. Artistic representation of the SIM-Lite Astrometric Observatory 

in space.

Figure 7. Data Acquisition at the SCDU testbed at JPL 

Figure 5. Optical bench inside the SCDU testbed shown with 

parabolic mirror (right) and data acquisition camera (left). 
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Figure 6. Optical bench close-up showing the data acquisition 

camera (left) and the Oriel® motor (right) that allowed precise 

position measurements. 
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Figure 10. Intensity measurements of HeNe collimated beam at position closest to parabolic 

mirror (left) and position at focus (left).

Data Analysis
First Run: The focus was initially determined at a Oriel® position of 8283.3µm with a standard 

deviation of 20.0675µm.  This position then became the target measurement. Intensity 

measurements were taken every 500µm to a maximum distance of 5000µm to each side of this 

focus. The intensity measurement for the focus was evaluated using a refined Misell algorithm 

(Figure 9). The focus intensity was Fourier transformed 500 µm behind the image. The amplitude of 

the intensity data at this recorded position was then multiplied by the imaginary exponential of this 

transform. This created image was then compared to the detector intensity recorded at that position 

(Figure 9). 

Second Run:  Before the second run the settings had to be realigned because the image was not 

centered on the detector camera. After realignment the new focus was found to be 8234.4µm with a 

standard deviation of 12.0237µm. This position became the new target measurement. Intensity 

measurements were taken every 500µm to a maximum distance of 6500µm to each side of the focus. 

The intensity measurement for the focus was evaluated using a refined Misell algorithm. The focus 

intensity was Fourier transformed 500 µm behind the image. The amplitude of the intensity data at 

this recorded position was then multiplied by the imaginary exponential of this transform. This created 

image was then compared to the detector intensity recorded at that position.
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