

Chapter 08 Lecture

Antibiotic Resistance

- Staphylococcus aureus
 - Gram-positive coccus; commonly called Staph
 - Frequent cause of skin and wound infections
 - Since 1970s, treated with penicillin-like antibiotics
 - E.g., methicillin
 - In 2004, over 60% of S. aureus strains from hospitalized patients were resistant to methicillin
 - ~2.3 million healthy people in U.S. harbor methicillinresistant S. aureus (MRSA)
 - Healthcare-associated MRSA (HA-MRSA) resistant to other antibiotics, including vancomycin
 - Vancomycin considered drug of last resort

8.1. Genetic Change in Bacteria

- Organisms adapt to changing environments
 - Natural selection favors those with greater fitness
 - Bacteria adjust to new circumstances
 - Regulation of gene expression (Chapter 7)
 - Genetic change (Chapter 8)
 - Bacteria excellent system for genetic studies
 - Rapid growth, large numbers
 - More known about E. coli genetics than any other
 - Change in organism's DNA alters genotype
 - Sequence of nucleotides in DNA
 - Bacteria are haploid, so only one copy, no backup
 - May change observable characteristics, or <u>phenotype</u>
 - Also influenced by environmental conditions

8.1. Genetic Change in Bacteria

Mutation and horizontal gene transfer

(b) Horizontal gene transfer

8.2. Spontaneous Mutations

- Transposons (jumping genes)
 - Can move from one location to another
 - Process is <u>transposition</u>
 - Gene insertionally inactivated
 - Function destroyed
 - Most transposons have transcriptional terminators
 - Blocks expression of downstream genes in operon

8.2. Spontaneous Mutations

- Transposons (jumping genes) (continued...)
 - Classic studies carried out by Barbara McClintock
 - Observed color variation in corn kernels resulting from transposons moving into and out of genes controlling pigment synthesis

8.3. Induced Mutations

- Induced mutations result from outside influence
 - Agent that induces change is <u>mutagen</u>
 - Geneticists may use mutagens to increase mutation rate
 - Two general types: <u>chemical</u>, <u>radiation</u>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.					
TABLE 8.1	Common Mutagens				
Agent		Action	Result		
Chemical Agent					
Chemicals that modify nucleobases Nitrous acid		Converts cytosine to uracil	Nucleotide substitution		
Alkylating agents		Adds alkyl groups (CH ₃ and others) to nucleobases	Nucleotide substitution		
Base analogs 5-Bromouracil		Used in place of normal nucleobases in DNA	Nucleotide substitution		
Intercalating agents Ethidium bromide		Inserts between base pairs	Addition or subtraction of nucleotides		
Transposons		Randomly insert into DNA	Insertional inactivation		
Radiation					
Ultraviolet (UV) light		Causes intrastrand thymine dimer to form	Errors during repair process		
X rays		Cause single- and double-strand breaks in DNA	Deletions		

8.3. Induced Mutations

Transposition

- Transposons can be used to generate mutations
- Transposon inserts into cell's genome
- Generally inactivates gene into which it inserts

Horizontal Gene Transfer as a Mechanism of Genetic Change

- Microorganisms commonly acquire genes from other cells: <u>horizontal gene transfer</u>
 - Can demonstrate recombinants with auxotrophs
 - Combine two strains
 - E.g., His-, Trp- with Leu-, Thr-
 - Spontaneous mutants unlikely
 - Colonies that can grow on glucose-salts medium most likely acquired genes from other strain

Horizontal Gene Transfer as a Mechanism of Genetic Change

- Genes naturally transferred by three mechanisms
 - Transformation: naked DNA uptake by bacteria
 - Transduction: bacterial DNA transfer by viruses
 - Conjugation: DNA transfer between bacterial cells

DNA.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **TABLE 8.3 Mechanisms of DNA Transfer** Sensitivity Main Size of DNA to DNase Mechanism **Feature Transferred** Addition* Transformation Naked DNA About 20 Yes transferred genes Transduction DNA Small fraction No enclosed in a of the chromosome bacteriophage coat Conjugation Plasmid Cell-to-cell Entire plasmid No transfer contact required Chromosome Cell-to-cell Variable No transfer contact fraction of required; only chromosome Hfr cells can be donors *DNase is an abbreviation of deoxyribonuclease, an enzyme that degrades

8.6. DNA-Mediated Transformation

- Naked DNA is not within cell or virus
- Cells release when lysed
- Addition of DNase prevents transformation
- Demonstration of transformation in pneumococci
 - Only encapsulated cells pathogenic

8.6. DNA-Mediated Transformation

- Transformation
 - Recipient cell must be <u>competent</u>
 - Most take up regardless of origin
 - Some accept only from closely related bacteria (DNA sequence)
 - Process tightly regulated
 - Bacillus subtilis has twocomponent regulatory system
 - Recognizes low nitrogen or carbon
 - High concentration of bacteria (quorum sensing)
 - Only a fraction of population becomes competent

8.7. Transduction

- Transduction: transfer of genes by bacteriophages
 - Specialized transduction: specific genes (Chapter 13)
 - Generalized transduction: any genes of donor cell
 - Rare error during phage assembly
 - Transfer of DNA to new bacterial host

- Conjugation: DNA transfer between bacterial cells
 - Requires contact between donor, recipient cells
 - Conjugative plasmids direct their own transfer
 - Replicons
 - F plasmid (fertility)
 of *E. coli* most
 studied

- Conjugation (continued...)
 - F plasmid of E. coli
 - F⁺ cells have, F⁻ do not
 - Encodes proteins including F pilus
 - Sex pilus
 - Brings cells into contact
 - Enzyme cuts plasmid
 - Single strand transferred
 - Complementary strands synthesized
 - Both cells are now F+

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Making contact F plasmid Chromosome F pilus Origin of transfer Donor cell F+ Recipient cell F-The F pilus contacts the recipient F- cell. Initiating transfer One strand is cut in the origin of transfer The pilus retracts and pulls the donor and recipient cells together. Transferring DNA A single strand of the F plasmid is transferred to the recipient cell; its complement is synthesized as it enters that cell. The strand transferred by the donor is replaced, using the remaining strand as a template for DNA synthesis. 4 Transfer complete

At the end of the transfer process, both the donor and recipient

F+ cell

F+ cell

cells are F+ and synthesize the F pilus.

- Chromosomal DNA transfer less common
 - Involves Hfr cells (high frequency of recombination)
 - F plasmid is integrated into chromosome via homologous recombination
 - Process is reversible
 - F' plasmid results when small piece of chromosome is removed with F plasmid DNA
 - F' is replicon

- Chromosomal DNA transfer less common (continued...)
 - Hfr cell produces F pilus
 - Transfer begins with genes on one side of origin of transfer of plasmid (in chromosome)
 - Part of chromosome transferred to recipient cell
 - Chromosome usually breaks before complete transfer (full transfer would take ~100 minutes)
 - Recipient cell remains F⁻ since incomplete F plasmid transferred

- Genomics reveals surprising variation in gene pool of even a single species
 - Perhaps 75% of E. coli genes found in all strains
 - Termed core genome of species
 - Remaining make up mobile gene pool
 - Plasmids, transposons, genomic islands, phage DNA

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 8.4	T	AB	LE	8	.4
-----------	---	----	----	---	----

The Mobile Gene Pool

TABLE 0.4	The Mobile delic 1001				
	Composition	Property			
Transposons					
Insertion sequences (ISs)	Transposase gene flanked by short repeat sequences	Move to different locations in DNA in same cell			
Composite transposons	Recognizable gene flanked by insertion sequences	Same as insertion sequences, but encode additional information			
Plasmids	Circular double-stranded DNA replicon; smaller than chromosomes	Generally code only for non-essential genetic information			
Genomic Islands	Large fragment of DNA in a chromosome or plasmid	Code for genes that allow cell to occupy specific environmental locations			
Phage DNA	Phage genome	May encode proteins important to bacteria			

- Resistance plasmids (R plasmids)
 - Resistance to antimicrobial medications, heavy metals (mercury, arsenic)
 - Compounds found in hospital environments
 - Often two parts
 - R genes
 - RTF (resistance transfer factor)
 - Codes for conjugation
 - Often broad host range
 - Normal microbiota can transfer to pathogens

- Bacteria can conjugate with plants
 - Natural genetic engineering
 - Agrobacterium tumefaciens causes crown gall
 - Different properties, produces opine, plant hormones
 - Piece of tumor-inducing (Ti) plasmid called T-DNA (transferred DNA) is transferred to plant
 - Incorporated into plant chromosome via nonhomologous recombination

Transposons yielded vancomycin resistant

Staphylococcus aureus strain

- Patient infected with S. aureus
 - Susceptible to vancomycin
- Also had vancomycin resistant strain of Enterococcus faecalis
 - Transferred transposoncontaining plasmid to S. aureus
 - Transposon jumped to plasmid in S. aureus

- Genomic islands: large DNA segments in genome
 - Originated in other species
 - Nucleobase composition very different from genome
 - G-C base pair ratio characteristic for each species
 - May provide different characteristics
 - Utilization of energy sources
 - Acid tolerance
 - Development of symbiosis
 - Ability to cause disease
 - Pathogenicity islands