

The Evolution of Microorganisms and Microbiology

1.1 Members of the Microbial World

- 1. Differentiate the biological entities studied by microbiologists from those studied by other biologists
- 2. Explain Carl Woese's contributions in establishing the three domain system for classifying cellular life
- 3. Provide an example of the importance to humans of each of the major types of microbes
- 4. Determine the type of microbe (e.g., bacterium, fungus, etc.) when given a description of a newly discovered microbe

The Importance of Microorganisms

- Most populous and diverse group of organisms
- Found everywhere on the planet
- Play a major role in recycling essential elements
- Source of nutrients and some carry out photosynthesis
- Benefit society by their production of food, beverages, antibiotics, and vitamins
- Some cause disease in plants and animals

Members of the Microbial World

 Organisms and acellular entities too small to be clearly seen by the unaided eye

– some < 1 mm, some macroscopic</p>

 These organisms are relatively simple in their construction and lack highly differentiated cells and distinct tissues

Type of Microbial Cells

• Prokaryotic cells lack a true membranedelimited nucleus

- this is not absolute!

• Eukaryotic cells have a membrane-enclosed nucleus, are more complex morphologically, and are usually larger than prokaryotic cells

Classification Schemes

- Three domain system, based on a comparison of ribosomal RNA genes, divides microorganisms into
 - Bacteria (true bacteria),
 - Archaea
 - Eukarya (eukaryotes)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Domain Bacteria

- Usually single-celled
- Majority have cell wall with peptidoglycan
- Most lack a membrane-bound nucleus
- Ubiquitous and some live in extreme environments
- Cyanobacteria produce significant amounts of oxygen

Domain Archaea

- Distinguished from *Bacteria* by unique rRNA gene sequences
- Lack peptidoglycan in cell walls
- Have unique membrane lipids
- Some have unusual metabolic characteristics
- Many live in extreme environments

Domain Eukarya - Eukaryotic

- Protists generally larger than Bacteria and Archaea
 - algae photosynthetic
 - protozoa may be motile, "hunters, grazers"
 - slime molds two life cycle stages
 - water molds devastating disease in plants
- Fungi
 - yeast unicellular
 - mold multicellular

Acellular Infectious Agents

- Viruses
 - smallest of all microbes
 - requires host cell to replicate
 - cause range of diseases, some cancers
- Viroids and virusoids

- infectious agents composed of RNA

• Prions – infectious proteins

1.2 Microbial Evolution

- 1. Propose a time line of the origin and history of microbial life and integrate supporting evidence into it
- Design a set of experiments that could be used to place a newly discovered cellular microbe on a phylogenetic tree based on small subunit (SSU) rRNA sequences
- 3. Compare and contrast the defi nitions of plant and animal species, microbial species, and microbial strains

Microbial Evolution

- Definition of life
 - cells and organization
 - response to environmental changes
 - growth and development
 - biological evolution
 - energy use and metabolism
 - regulation and homeostasis
 - reproduction

Origins of Life

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Microbial fossils
 - Swartkoppie chert granular silica
 - 3.5 billion years old
- Fossil record sparse
- Indirect evidence and scientific method are used to study origins of life

J. William Schopf. Microfossils of the Early Archean Apex. Chert: New Evidence of the Antiquity of Life. Reprinted with permission from *Science* 260:640 © 1993 Sept. 30, fi g 4 a, f, g. AAAS

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

Earliest Molecules -RNA

- Original molecule must have fulfilled protein and hereditary function
- Ribozymes
 - RNA molecules that form peptide bonds
 - perform cellular work and replication
- Earliest cells may have been RNA surrounded by liposomes

Earliest Molecules – RNA - 2

- Cellular pool of RNA in modern day cells exists in and is associated with the ribosome (rRNA, tRNA, mRNA)
 - RNA catalytic in protein synthesis
 - RNA may be precursor to double stranded DNA
- Adenosine 5' triphosphate (ATP) is the energy currency and is a ribonucleotide
- RNA can regulate gene expression

Earliest Metabolism

- Early energy sources under harsh conditions

 inorganics, e.g., FeS
- Photosynthesis
 - cyanobacteria evolved2.5 billion years ago
 - stromatolites mineralized layers of microorganisms

© Dirk Wiersma/SPL/Photo Researchers, Inc.

Evolution of 3 Domains of Life

- Universal phylogenetic tree
 - based on comparisons of small subunit rRNA (SSU rRNA)
 - aligned rRNA sequences from diverse organisms are compared and differences counted to derive a value of evolutionary distance
 - relatedness, but not time of divergence, is determined this way

c	Cells from organism 1			
Lyse cells to release contents and isolate DNA.				
MON	M	DNA		
U: ar	se poly nd purif	merase chain r y SSU rRNA ge	eaction to amplify nes.	
NOAN	SSU r	RNA genes		
Sequence genes.				
ATGCTCAAG	ТСА			
¥ ^R	Repeat process for other organisms.			
¥ AI	lign seo	uences to be c	compared.	
Organism	sm SSU rRNA sequence			
1	ATGCTCAAGTCA			
2	TAGCTCGTGTAA			
3	AAGCTCTAGTTA			
4	AACCTCATGTTA			
C ea di	ount the ach pair stance	e number of nu r of sequences (E _D).	cleotide differences between and calculate evolutionary	
Pair compared	ED	Corrected ED	For organisms 1 and 2, 5 of the 12	
1-> 2	0.42	0.61	nucleotides are different:	
13	0.25	0.30	LD = 3/12 = 0.42.	
1	0.33	0.44	Ine initial ED calculated is corrected using a statistical method that considers for each site the probability of a mutation back to the original nucleotide or of additional forward mutations.	
2-> 3	0.33	0.44		
2	0.33	0.44		
3→ 4	0.25	0.30		
↓ Fe to	eed dat constr	a into compute uct phylogenet	er and use appropriate software ic tree.	
1 0.08			nrooted phylogenetic tree. Note at distance from one tip to nother is proportional to the E _D .	
0.15				
	//	0.	00	
	/			
4	1			

20

Last Universal Common Ancestor (LUCA)

- The root or origin of modern life is on bacterial branch but nature still controversial
- Archaea and Eukarya evolved independently of Bacteria
- Archaea and Eukarya diverged from common ancestry

Endosymbiotic Hypothesis

- Origin of mitochondria, chloroplasts, and hydrogenosomes from endosymbiont
- Mitochondria and chloroplasts
 - SSU rRNA genes show bacterial lineage
 - genome sequences closely related to Rickettsia and Prochloron, respectively
- Hydrogenosomes
 - anaerobic endosymbiont

Evolution of Cellular Microbes

- Mutation of genetic material led to selected traits
- New genes and genotypes evolved
- Bacteria and Archaea increase genetic pool by horizontal gene transfer within the same generation

Microbial Species

- Eukaryotic microbes fit definition of reproducing isolated populations
- *Bacteria* and *Archaea* do not reproduce sexually and are referred to as strains
 - a strain consists of descendents of a single, pure microbial culture
 - may be biovars, serovars, morphovars, pathovars
- binomial nomenclature
 - genus and species epithet

1.3 Microbiology and Its Origins

- Evaluate the importance of the contributions to microbiology made by Hooke, Leeuwenhoek, Pasteur, Koch, Cohn, Beijerinck, von Behring, Kitasato, Metchnikoff, and Winogradsky
- 2. Outline a set of experiments that might be used to decide if a particular microbe is the causative agent of a disease
- Predict the difficulties that might arise when using Koch's postulates to determine if a microbe causes a disease unique to humans

Microbiology - Origins

- Study of microorganisms
- Tools used for the study
 - microscopes
 - culture techniques
 - molecular genetics
 - genomics

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Discovery of Microorganisms

 Antony van Leeuwenhoek (1632-1723)

 first person to observe and describe microorganisms accurately

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(c)

b; © Kathy Park Talaro/Visuals Unlimited c: © Science VU/Visuals Unlimited

The Conflict over Spontaneous Generation

- Spontaneous generation
 - Idea that living organisms can develop from nonliving or decomposing matter
- Francesco Redi (1626-1697)
 - discredited spontaneous generation
 - showed that maggots on decaying meat came from fly eggs

But Could Spontaneous Generation Be True for Microorganisms?

• John Needham (1713-1781)

– his experiment:

mutton broth in flasks \rightarrow boiled \rightarrow sealed

- results: broth became cloudy and contained microorganisms
- Lazzaro Spallanzani (1729-1799)
 - his experiment:

broth in flasks $\rightarrow \text{sealed} \rightarrow \text{boiled}$

- results: no growth of microorganisms

Louis Pasteur (1822-1895)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- 'Swan-neck flask' experiments
 - placed nutrient solution in flasks
 - created flasks with long, curved necks
 - boiled the solutions
 - left flasks exposed to air
- results: no growth of microorganisms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Final Blow to Theory of Spontaneous Generation

- John Tyndall (1820-1893)
 - demonstrated that dust carries microorganisms
 - showed that if dust was absent, nutrient broths remained sterile, even if directly exposed to air
 - also provided evidence for the existence of exceptionally heat-resistant forms of bacteria
- Ferdinand Cohn (1828-1898)
 - heat-resistant bacteria could produce endospores

The Role of Microorganisms in Disease

- Was not immediately obvious
- Infectious disease believed to be due to supernatural forces or imbalances of 4 bodilyfluid 'humors'
- Establishing connection depended on development of techniques for studying microbes

Evidence for the Relationship between Microorganisms and Disease

- Agostini Bassi (1773-1856)
 - showed that a disease of silkworms was caused by a fungus
- M. J. Berkeley (ca. 1845)
 - demonstrated that the great Potato Blight of Ireland was caused by a water mold
- Heinrich de Bary (1853)
 - showed that smut and rust fungi caused cereal crop diseases

More Evidence...

- Louis Pasteur
 - demonstrated microorganisms carried out fermentations, helping French wine industry
 - developed pasteurization to avoid wine spoilage by microbes
 - showed that the pébrine disease of silkworms was caused by a protozoan

Other Evidence...

- Joseph Lister
 - provided indirect evidence that microorganisms were the causal agents of disease
 - developed a system of surgery designed to prevent microorganisms from entering wounds as well as methods for treating instruments and surgical dressings
 - his patients had fewer postoperative infections

Final Proof...

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Bettmann/Corbis

- Robert Koch (1843-1910)
 - established the relationship between *Bacillus anthracis* and anthrax
 - used criteria developed by his teacher Jacob Henle (1809-1895)
 - these criteria now known as Koch's postulates
 - still used today to establish the link between a particular microorganism and a particular disease

Postulate

1. The microorganism must be present in every case of the disease but absent from healthy organisms.

Experimentation

Koch developed a staining technique to examine human tissue. *Mycobacterium tuberculosis* could be identified in diseased tissue.

2. The suspected microorganisms must be isolated and grown in a pure culture.

Koch grew *M. tuberculosis* in pure culture on coagulated blood serum.

3. The same disease must result when the isolated microorganism is inoculated into a healthy host. Koch injected cells from the pure culture of *M. tuberculosis* into guinea pigs. The guinea pigs subsequently died of tuberculosis.

4. The same microorganisms must be isolated again from the diseased host. Koch isolated *M. tuberculosis* in pure culture on coagulated blood serum from the dead guinea pigs.

Limitations of Koch's Postulates

- Some organisms cannot be grown in pure culture
- Using humans in completing the postulates is unethical
- Molecular and genetic evidence may replace and overcome these limits

The Development of Techniques for Studying Microbial Pathogens

- Koch's work led to discovery or development of:
 - agar
 - Petri dishes
 - nutrient broth and nutrient agar
 - methods for isolating microorganisms

Other Developments...

- Charles Chamberland (1851-1908)
 - developed porcelain bacterial filters used by Ivanoski and Beijerinck to study tobacco mosaic disease
 - determined that extracts from diseased plants had infectious agents present which were smaller than bacteria and passed through the filters
 - infectious agents were eventually shown to be viruses

Other Developments...

- Pasteur and Roux
 - discovered that incubation of cultures for long intervals between transfers caused pathogens to lose their ability to cause disease (termed 'attenuation')
- Pasteur and his coworkers
 - developed vaccines for chicken cholera, anthrax, and rabies

Immunological Studies

- once established, led to study of host defenses - immunology
- Edward Jenner (ca. 1798)
 - used a vaccination procedure to protect individuals from smallpox

NOTE: this preceded the work establishing the role of microorganisms in disease!

More Developments...

- Emil von Behring (1854-1917) and Shibasaburo Kitasato (1852-1931)
 - developed antitoxins for diphtheria and tetanus
 - evidence for humoral (antibody-based) immunity
- Elie Metchnikoff (1845-1916)
 - discovered bacteria-engulfing, phagocytic cells in the blood
 - evidence for cellular immunity

The Development of Industrial Microbiology and Microbial Ecology

- Louis Pasteur
 - demonstrated that alcohol fermentations and other fermentations were the result of microbial activity
 - developed the process of pasteurization to preserve wine during storage

Developments in Microbial Ecology

- Sergei Winogradsky (1856-1953) and Martinus Beijerinck (1851-1931)
 - studied soil microorganisms and discovered numerous interesting metabolic processes (e.g., nitrogen fixation)
 - pioneered the use of enrichment cultures and selective media

1.4 Microbiology Today

- Construct a concept map, table, or drawing that illustrates the diverse nature of microbiology and how it has improved human conditions
- 2. Support the belief held by many microbiologists that microbiology is experiencing its second golden age

Microbiology Has Basic and Applied Aspects

- Basic aspects are concerned with individual groups of microbes, microbial physiology, genetics, molecular biology and taxonomy
- Applied aspects are concerned with practical problems – disease, water, food and industrial microbiology

Molecular and Genomic Methods

- Led to a second golden age of microbiology (rapid expansion of knowledge)
- Discoveries
 - restriction endonucleases (Arber and Smith)
 - first novel recombinant molecule (Jackson, Symons, Berg)
 - DNA sequencing methods (Woese, Sanger)
 - bioinformatics and genomic sequencing and analysis

Major Fields in Microbiology

- Medical microbiology diseases of humans and animals
- Public health microbiology control and spread of communicable diseases
- Immunology how the immune system protects a host from pathogens

More Fields...

- Microbial ecology is concerned with the relationship of organisms with their environment
 - less than 1% of earth's microbial population has been cultured
- Agricultural microbiology is concerned with the impact of microorganisms on agriculture
 - food safety microbiology
 - animal and plant pathogens

More Fields....

- Industrial microbiology began in the 1800s
 - fermentation
 - antibiotic production
 - production of cheese, bread, etc.
- Microbial physiology studies metabolic pathways of microorganisms

More Fields....

- Molecular biology, microbial genetics, and bioinformatics study the nature of genetic information and how it regulates the development and function of cells and organisms
- Microbes are a model system of genomics