

Innate Host Resistance

33.1 Innate Resistance Overview

- 1. Identify the major components of the mammalian host immune system
- 2. Integrate the major immune components and their functions to explain in general terms how the immune system protects the host

Host Resistance Overview

- Most pathogens (disease causing microbes)
 - must overcome surface barriers and reach underlying
 - overcome resistance by host
 - nonspecific resistance
 - specific immune response

Host Resistance Overview...

- Immune system
 - composed of widely distributed cells, tissues, and organs
 - recognizes foreign substances or microbes and acts to neutralize or destroy them
- Immunity
 - ability of host to resist a particular disease or infection
- Immunology

- science concerned with immune responses

Immunity

- Nonspecific immune response
 - Aka nonspecific resistance, innate, or natural immunity
 - acts as a first line of defense
 - offers resistance to any microbe or foreign material
 - lacks immunological memory
- Specific immune response
 - Aka acquired, adaptive, or specific immunity
 - resistance to a particular foreign agent
 - has "memory"
 - effectiveness increases on repeated exposure to agent

Host Defenses

Antigens

- Recognized as foreign
- Invoke immune responses
 - presence of antigen in body ultimately results in B cell activation $\rightarrow \rightarrow$ production of antibodies
 - antibodies bind to specific antigens, inactivating or eliminating them
 - other immune cells also become activated
- Name comes from antibody generators

White Blood Cells of Innate and Adaptive Immunity

- White blood cells (WBCs) play a major role in the innate and specific responses
- Hematopoesis
 - development of white blood cells in bone marrow of mammals
 - WBCs that mature prior to leaving bone marrow, e.g., macrophages and dendritic cells, become part of innate immune system and will respond to all antigens
 - WBCs that are mature but not yet activated after leaving bone marrow become part of the adaptive immune response, e.g., B and T cells and could differentiate in response to specific antigens

33.2 Physical and Mechanical Barrier Defenses of Innate Resistance

- 1. Identify the barriers that help prevent microbial invasion of the host
- 2. Explain how the physical and chemical barriers function to prevent microbial invasion of the host
- 3. Relate host anatomy and secretions to the success of innate resistance strategies

Physical Barriers in Nonspecific (Innate) Resistance

- Effectiveness impacted by:
 - direct factors
 - nutrition, physiology, fever, age, and genetics
 - indirect factors
 - personal hygiene, socioeconomic status, and living conditions
- Along with host's secretions (flushing), barriers = first line of defense against microbes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Skin

- Strong mechanical barrier to microbial invasion
 - keratin produced by keratinocytes in outer layer
- Inhospitable environment for microbes
 - attached organisms removed by shedding of outer skin cells

Stratified epithelium

Connective tissue

- pH is slightly acidic
- high NaCl concentration
- subject to periodic drying

11

CDC/Dr. Steve Krau:

Mucous Membranes

- Form protective covering that resists penetration and traps many microbes
- Are often bathed in antimicrobial secretions which contain a variety of antimicrobial substances
 - lysozyme
 - hydrolyzes bond connecting sugars in peptidoglycan
 - lactoferrin
 - secreted by activated macrophages and PMNs
 - sequesters iron from plasma
 - lactoperoxidase
 - produces superoxide radicals

Respiratory System

- Turbulent air flow deposits microbes onto mucosal surfaces
- Mucociliary blanket
 - mucous secretions trap microbes
 - once trapped, microbes transported away from the lungs (mucociliary escalator)
 - expelled by coughing or sneezing
 - salivation washes microbes to stomach
- Alveolar macrophages
 - phagocytic cells in alveoli of lungs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Ellen R. Dirksen/Visuals Unlimited

Gastrointestinal Tract

- Stomach
 - gastric acid
- Intestines
 - pancreatic enzymes
 - bile
 - intestinal enzymes
 - GALT
 - peristalsis

- Intestines
 - shedding of columnar epithelial cells
 - secretory IgA
 - normal microbiota
 - Paneth cells
 - produce lysozyme
 - produce cryptins

Genitourinary Tract

- Unfavorable environment for foreign microbes
 - low pH of urine and vagina
 - vagina has lactobacilli
 - urea and other toxic metabolic end products in urine
 - hypertonic nature of kidney medulla
- Flushing with urine and mucus
- Distance barrier of male urethra

The Eye

- Mucus secreting epithelial membrane
- Flushing action of tears
- Lysozyme, lactoferrin, and secretory IgA in tears

33.3 Chemical Mediators in Innate Resistance

- 1. Discuss host mediators that have antimicrobial actions
- 2. Describe in general terms the activation of the host complement system and its three outcomes
- 3. List the four categories of cytokines and discuss their major functions
- 4. Correlate host protection from microbial invasion with specific mediators

Chemical Mediators in Nonspecific (Innate) Resistance

- Many already noted (e.g., gastric juices, lysozyme, urea)
- A variety of defensive chemicals such as defensins and other polypeptides are also found in blood, lymph, and other body fluids

Antimicrobial Peptides

- Cationic peptides
 - highly conserved through evolution
 - three classes whose biological activity is related to their ability to damage bacterial plasma membranes
 - first class: linear, alpha-helical peptides that lack cysteine amino acid residues
 - e.g., cathelicidin, produced by a variety of cells

Cationic Peptides...

- Second class: defensins
 - peptides that are open-ended, rich in arginine and cysteine, and disulfide linked
 - found in neutrophils, intestinal Paneth cells and intestinal and respiratory epithelial cells
- Third class: larger peptides that are enriched for specific amino acids and exhibit regular structural repeats
 - e.g., histatin, present in human saliva and has anti-fungal activity

Bacteriocins

- Peptides produced by normal microbiota
- Lethal to related species
- Produced by Gram-positive and Gramnegative cells
- e.g., colicins produced by *E. coli*
- e.g., lantibiotics produced by Gram-positive bacteria

The Complement System

- Composed of >30 serum proteins
- Augments (or "complements") the antibacterial activity of antibody
- Three major activities:
 - defending against bacterial infections
 - bridging innate and adaptive immunity
 - disposing of wastes

Opsonization

- Process in which microbes are coated by serum components (opsonins) in preparation for recognition/ingestion by phagocytic cells
- Some complement proteins are opsonins
 - bind to microbial cells, coating them for phagocyte recognition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Phagocytic cell	Degree of binding	Opsonin
(a) Ab Ab Ab Fc receptor	+	Antibody
(b) C3b C3b receptor	+ +	Complement C3b
(c)	+ + + +	Antibody and complement C3b

Other Functions of Complement Proteins

- Function as chemotactic signals that recruit phagocytes to their activation site
- Puncture cell membranes causing cell lysis
- Many complement activities unite the nonspecific and specific arms of the immune system to destroy and remove invading pathogens

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Complement Activation

- Produced in inactive forms
- Activated following
 enzymatic cleavage
- Must be activated in cascade fashion
- Three pathways of activation
 - alternative
 - lectin
 - classical

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.1 Key Complement Proteins and Their Functions				
	Protein	Function		
COMPLEMENT ACTIVATION (initiation through three unique pathways)				
Alternative Pathway	C3	C3 is activated by repeating patterns within microbial structures and then is spontaneously cleaved into C3a and C3b; C3b binds to nearby membrane.		
	Factor D	Factor D is activated by C3b to become an active enzyme, which activates Factor B.		
	Factor B	Factor B adsorbs to C3b, forming a C3 convertase (protease).		
	C3bBb	C3bBb (the active C3 convertase) cleaves additional C3 into its a and b fragments; C3b binds to the nearby membrane.		
	Properidin	Properidin stabilizes the C3 convertase.		
Lectin Pathway	Mannose-binding protein (MBP)	MBP binds to mannose on microorganisms, then recruits and binds plasma esterase to become mannose- associated serine protease (MASP).		
	MASP	MASP (the active C3 convertase) cleaves C3 into C3a and C3b; C3b binds to the nearby membrane.		
Classical Pathway	Antibody (Ab) formed by adaptive immune system upon subsequent exposure to antigen (Ag)	Ab binds to Ag on microorganism, causing three- dimensional shift in Ab structure, which reveals cryptic amino acids near carboxy-terminus (Fc region); the newly revealed amino acids attract plasma C1 protein.		
	C1 (trimer of components q, r, and s)	C1q binds to Fc region of Ab-Ag complex; C1r,s binds plasma calcium.		
	Ag-Ab-C1q,r,s-(Ca ²⁺) complex	Ag-Ab-C1-(Ca^{2^+}) complex is an activated enzyme (called the C2/C4 esterase) that cleaves plasma C2 and C4 into their a and b fragments, respectively.		
	C2a	C2a binds the Ag-Ab-C1-(Ca ²⁺) complex.		
	C4b	C4b binds the Ag-Ab-C1-(Ca^{2+})-C2a complex, forming a C3 convertase (protease).		
	Ag-Ab-C1-C2a-C4b	Ag-Ab-C1-C2a-C4b (the active C3 convertase) cleaves plasma C3 into its a and b fragments; C3b binds to the nearby membrane.		
COMPLEMENT ACTION (common effector pathway; convergence point for alternative, lectin, and classical activation pathways)	C3b-membrane complex (stabilized C3b)	C3b stabilized in a membrane becomes an active C5 convertase (protease), cleaving plasma C5 into its respective a and b fragments.		
	C5b	C5b binds plasma C6 and C7, forming a new, membrane- binding complex.		
	C5b-C6-C7-membrane complex	Membrane-bound C5b-C6-C7 recruits plasma C8 and C9, which insert into the membrane adjacent to C5b-C6-C7.		
	C5b-C6-C7-C8-C9 complex	C5b-C6-C7-C8-C9 complex forms transmembrane pore known as the membrane attack complex (MAC); MAC formation leads to cell lysis.		

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Alternative Complement Pathway

- Involved in nonspecific defenses against intravascular invasion by bacteria/fungi
- Dependent on interaction of complement with repetitive structures on pathogens
- Begins with activation of C3
- Results in formation of membrane attack complex

© Rosse et al., 1966, Originally published in the Journal of Experimental Medicine, 123:969-984

Lectin Complement Pathway

- Also called the mannan-binding lectin pathway
- Begins with activation of C3 and lectin binding
- Dependent on interaction of host mannosebinding protein (MBP) with pathogen surfaces
 - enhances phagocytosis

Classical Complement Pathway

- Usually dependent on antigen-antibody interactions
 - this is part of acquired immunity and not as fast as other pathways
- Produces cleavage products that participate in opsonization, chemotaxis, and the membrane attack complex
- Can also be activated in response to some microbial products

Cytokines

- Soluble proteins or glycoproteins that are released by one cell population that act as intercellular mediators or signaling molecules
- Three proposed groups based on function
 - regulators of innate resistance mechanisms
 - regulators of adaptive immunity
 - stimulators of hematopoiesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 32.2 Normal Human Microbiota Routinely Cultured from Various Body Sites. Knowing the Identity of These Resident Microorganisms Assists in the Rapid Identification and Treatment of Pathogens.

Body System	Body Site	Microorganisms	
Eye	Conjunctiva	Coagulase-negative staphylococci <i>Hemophilus</i> spp.	Staphylococcus aureus Streptococcus spp.
	Outer ear	Coagulase-negative staphylococci Diphtheroids	<i>Pseudomonas</i> spp. Enterobacteria (occasionally)
Skin	Nonmucous membrane surfaces	Coagulase-negative staphylococci Diphtheroids Propionibacterium acnes Staphylococcus aureus Streptococcus spp.	Bacillus spp. Malassezia furfur Candida spp. Mycobacterium spp. (occasionally)
Respiratory tract	Nose	Coagulase-negative staphylococci Streptococcus spp. (including S. pneumoniae) Staphylococcus aureus	Neisseria spp. Haemophilus spp.
Gastrointestinal tract	Mouth and oropharynx	Streptococcus spp. (including S. pneumonia) Coagulase-negative staphylococci Veillonella spp. Fusobacterium spp. Treponema spp. Porphyromonas spp. Prevotella spp. Neisseria spp.	Branhamella spp. Hemophilus spp. Diphtheroids Candida spp. Actinomyces spp. Eikenella corrodens Staphylococcus aureus
	Stomach	Streptococcus spp. Staphylococcus spp.	Lactobacillus spp. Peptostreptococcus spp.
	Small intestine	Lactobacillus spp. Bacteroides spp. Clostridium spp.	<i>Mycobacterium</i> spp. <i>Enterococcus</i> spp. Enterobacteria
	Large intestine	Bacteroides spp. Fusobacterium spp. Clostridium spp. Peptostreptococcus spp. Escherichia coli Klebsiella spp. Proteus spp. Lactobacillus spp.	Enterococcus spp. Streptococcus spp. Pseudomonas spp. Acinetobacter spp. Coagulase-negative staphylococci Staphylococcus aureus Mycobacterium spp. Actinomyces spp.
Genitourinary tract	Distal urethra	Coagulase-negative staphylococci Diphtheroids <i>Streptococcus</i> spp. <i>Mycobacterium</i> spp.	Bacteroides spp. Fusobacterium spp. Peptostreptococcus spp.
	Vagina	Lactobacillus spp. Peptostreptococcus spp. Diphtheroids Streptococcus spp.	Clostridium spp. Bacteroides spp. Gardnerella vaginalis Candida spp.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.3 Exa	.3 Examples of Cytokines Grouped by Function				
	Cytokine ¹	Source	Role		
Innate Resistance	IL-1	Macrophages, endothelial and epithelial cells	Upregulates inflammatory response, including fever		
	IL-6	Macrophages, T cells, endothelial cells, and adipocytes	Upregulates acute phase response, including fever; stimulates neutrophil differentiation		
	IL-23	Macrophages and dendritic cells	Upregulates inflammatory response via IL-17 from T cells; stimulates IL-1, IL-6, TNF, and chemokine production; enhances T-cell activation and memory response		
	IL-27	Macrophages and dendritic cells	Enhances antigen recognition by T and B cells		
	IFN-α	All somatic cells, especially macrophages	Upregulates RNase activity to control viral infection and tumor formation; upregulates inflammatory response, including antigen presentation		
	TNF-α	Monocytes/Macrophages	Upregulates inflammatory response, including fever; stimulates acute-phase protein synthesis; induces tumor regression; mediates septic shock		
Adaptive Immunity	IL-2	T cells (autocrine process)	Stimulates growth and differentiation of T cells and NK cells; promotes antibody secretion from B cells		
	IL-4	T-cell subset (and putatively basophils)	Induces differentiation of a T-cell subset; stimulates production of antibody, especially antibody associated with allergies; inhibits IL-12 production		
	IL-5	T-cell subset and mast cells	Stimulates growth of B cells; enhances antibody secretion; activates eosinophils		
	IL-12	Macrophages, dendritic cells, and a T-cell subset	Stimulates growth and function of T-cell subsets, stimulates killing functions of NK cells and cytotoxic lymphocytes		
	IL-17	T-cell subset	Monocyte and neutrophil chemokine; induces pro-inflammatory cytokines IL-6, TNF- α , IL-1, chemokines, and prostaglandins from various cells		
	IFN-γ	T-cell subset and NK cells	Enhances phagocytic functions of macrophages; upregulates cytolytic function of NK cells; stimulates antiviral functions		
	TNF-β (lymphotoxin)	Numerous somatic cells	Upregulates T- and B-cell development; activates neutrophils; lyses tumor cells; upregulates CSF-2 and CSF-3		
Hematopoiesis	IL-3	Basophils and activated T cells	Stimulates pluripotent hematopoietic stem cells to become myeloid progenitor cells; stimulates myeloid cell proliferation		
	IL-7	Bone marrow and thymic stromal cells, dendritic and epithelial cells, and hepatocytes	Stimulates pluripotent hematopoietic stem cells to become lymphoid progenitor cells; stimulates lymphoid cell proliferation		
	CSF-1	Osteoblasts	Induces hematopoietic stem cells to proliferate and differentiate into monocytes/macrophages; promotes monocyte survival		
	CSF-2	Macrophages, T cells, endothelial and mast cells, and fibroblasts	Induces hematopoietic stem cells to proliferate and differentiate into granulocytes and monocytes		
	CSF-3	Numerous cells and tissues	Induces hematopoietic stem cells to proliferate and differentiate into neutrophils; stimulates neutrophil function and survival		

Cytokines...

- Monokines
 - released from mononuclear phagocytes
- Lymphokines
 - released from T lymphocytes
- Interleukins
 - released from one leukocyte and act on another leukocyte
- Colony stimulating factors (CSFs)
 - stimulate growth and differentiation of immature leukocytes in bone marrow

More about Cytokines

- Cytokine production is induced by nonspecific stimuli (infection), inflammation, T cell-antigen interactions
- Autocrine function
 - affect same cell responsible for their production
- Paracrine function
 - affect nearby cells
- Endocrine function
 - spread by circulatory system to distant target cells

Cytokines Biological Effects

- Must bind to specific receptors on target cells
- Many activities
 - e.g., differentiation, proliferation, apoptosis
 - chemokines
 - stimulate chemotaxis and chemokinesis (direct cell movement)
Acute Phase Proteins

- Macrophage activation by bacteria → cytokine release → liver stimulation → acute phase protein production
 - includes C-reactive protein (CRP), mannanbinding lectin (MBL), surfactant proteins A (SP-A) and D (Sp-D)
 - can bind bacterial surfaces and act as opsonins

Innate Host Resistance

33.4 Cells, Tissues, and Organs of the Immune System

- 1. Recognize the different types of leukocytes involved with innate resistance
- 2. Outline the leukocyte response to microbial invasion
- 3. Integrate leukocyte distribution within the host with host resistance
- 4. Differentiate between primary and secondary lymphoid organs and tissues in terms of structure and function
- 5. Predict connections between innate host resistance and specific immune responses

Cells of the Immune System

- Granulocytes
- Mast cells
- Monocytes and macrophages
- Dendritic cells
- Lymphocytes
- Each has specialized role in defending host
- Leukocytes
 - white blood cells
 - involved in both specific and nonspecific immunity
 - all arise from pluripotent stem cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.4	Norma	I Adult Blood Count	
Cell Type		Cells/mm ³	Percent WBC
Red blood cells		5,000,000	
Platelets		250,000	
White blood cells		7,400	100
Neutrophils		4,320	60
Lymphocytes		2,160	30
Monocytes		430	6
Eosinophils		215	3
Basophils		70	1

Mast Cells

- Bone marrow-derived cells
- Differentiate in blood and connective tissue
- Contain granules containing histamine and other pharmacologically active chemicals
- Play important role in development of allergies and hypersensitivities

Granulocytes

- Irregularly-shaped nuclei with two to five lobes
- Cytoplasm has granules with reactive substances
 - kill microbes, enhance inflammation
- Three types
 - basophils, eosinophils, neutrophils
 (polymorphonuclear neutrophil (PMN))

Basophils

- Stain bluish-black with basic dyes
- Nonphagocytic
- Release vasoactive mediators
 - e.g., histamine, prostaglandins, serotonin, and leukotrienes from granules
- Play important role in development of allergies and hypersensitivities

Eosinophils

- Stain red with acidic dyes
- Defend against protozoan and helminth parasites
- Release cationic proteins and reactive oxygen metabolites
- May play a role in allergic reactions

Neutrophils

- Stain at neutral pH
- Highly phagocytic
- Circulate in blood then migrate to sites of tissue damage
- Kill ingested microbes with lytic enzymes and reactive oxygen metabolites contained in primary and secondary granules

Monocytes and Macrophages

- Highly phagocytic cells
- Monocytes
 - are mononuclear phagocytic leukocytes
 - after circulating for ~8 hours, mature into macrophages
- Macrophages
 - larger than monocytes, reside in specific tissues, highly phagocytic
 - have a variety of surface receptors (including pattern recognition receptors)
 - bind pathogen associated molecular patterns (PAMPs)
 - named according to tissue in which they reside

Dendritic Cells

- Heterogeneous group of cells
 with neuron-like appendages
 - from lymphoid and myeloid lines
- Present in small numbers in blood, skin, and mucous membranes of nose, lungs, and intestines
 - also express pattern recognition receptors
 - contact, phagocytose, and process antigens → display foreign antigens on their surfaces (antigen presentation)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

© David Scharf/Photo Researchers, Inc

Lymphocytes

- Major cells of the immune system
- Major populations include T cells, B cells, and natural killer (NK) cells
- B and T lymphocytes differentiate in bone marrow from stem cells
 - are only activated by binding of specific antigen onto lymphocyte surface receptors
 - after activation replication continues as lymphocytes circulate and enter lymphoid tissue
 - memory cells are activated lymphocytes that do not immediately replicate, but will do so later in host's life when antigen is again present

B Lymphocytes

- B cells (B lymphocytes)
 - mature in bone marrow
 - circulate in blood
 - can settle in lymphoid organs
 - after maturation and activation are called plasma cells and produce antibodies

T Lymphocytes (T cells)

- Mature in thymus
- Can remain in thymus, circulate in blood, or reside in lymphoid tissue
- Like B cells, require antigen binding to surface receptors for activation and continuation of replication
- Activated T cells differentiate into helper T cells (TH) and cytotoxic lymphocytes (CTLs)
- Secrete cytokines, chemicals that have effects on other cells, are produced and secreted by activated T cells

Natural Killer (NK) Cells

- Small population of large non-phagocytic granular lymphocytes
 - important role in innate immunity
 - kill malignant cells and cells infected with pathogens by releasing granzymes (cytotoxic enzymes)
- Two ways of recognizing target cells
 - bind to antibodies which coat infected or malignant cells (antibody-dependent cell-mediated cytotoxicity (ADCC)
 - recognizes cells that have lost their class I major histocompatibility antigen due to presence of virus or cancer

Organs and Tissues of the Immune System

- Primary organs and tissues
 - sites where lymphocytes mature and differentiate into antigen-sensitive mature B and T cells
- Secondary organs and tissues
 - areas where lymphocytes may encounter and bind antigen
 - followed by proliferation and differentiation into fully mature effector cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Primary Lymphoid Organs and Tissues

- Thymus
 - precursor cells move enter from bone marrow and proliferate
 - thymic deletion removes T cells recognizing self antigens
 - remaining cells become mature T cells
 - enter bloodstream and recognize nonself antigens
- Bone marrow
 - site of B cell maturation in mammals
 - maturation involves removal of nonfunctioning and self-reactive cells

Secondary Lymphoid Organs and Tissues

- Spleen
 - most highly organized lymphoid organ
 - filters blood
 - macrophages and dendritic cells trap microbes and antigens
 - present antigens to B and T cells
 - most common way that lymphocytes become activated to carry out their immune functions

Secondary Lymphoid Organs and Tissues

- Lymph nodes
 - most highly organized lymphoid tissue
 - filter lymph
 - microbes and antigens trapped and phagocytosed by macrophages and dendritic cells
 - B cells differentiate into memory and plasma cells within lymph nodes

Secondary Lymphoid Organs and Tissues

- Lymphoid tissue
 - located throughout the body
 - serve as interface between innate and acquired host immunity
 - act as areas of antigen sampling and processing
 - some lymphoid cells are found closely associated with specific tissues
 - e.g., skin-associated lymphoid tissue (SALT)
 - e.g., mucous-associated lymphoid tissue (MALT)

Skin Associated Lymphoid Tissue

(SALT)

- Contains specialized cells
 - Langerhans cell
 - dendritic cell that can phagocytose antigens
 - differentiates into interdigitating dendritic cell – presents antigen to and activates T cells
 - intraepidermal
 lymphocyte
 - function as T cells

Mucosal-Associated Lymphoid Tissue (MALT)

- Specialized immune barrier
 - gut-associated lymphoid tissue (GALT)
 - bronchial-associated lymphoid tissue (BALT)
 - urogenital system MALT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33.5 Phagocytosis

- 1. Explain the methods by which pathogens are recognized by phagocytes
- 2. Describe the process of autophagy and phagocytosis
- 3. Forecast how biochemical activities within the phagocyte result in pathogen destruction

Phagocytosis

- Process by which phagocytic cells (monocytes, tissue macrophages, dendritic cells, and neutrophils) recognize, ingest, and kill extracellular microbes
- Two mechanisms for recognition of microbe by phagocyte
 - opsonin-independent (nonopsonic) recognition
 - opsonin-dependent (opsonic) recognition
- Phagocytosis can be greatly increased by opsonization

Pathogen Recognition

- Opsonin-independent mechanism
 - pathogen recognition
 - common pathogen components are non-specifically recognized to activate phagocytes
 - signaling mechanism involved
 - involves nonspecific/specific receptors on phagocytes
 - four main forms:
 - recognition by lectin-carbohydrate interactions
 - recognition by protein-protein interactions
 - recognition by hydrophobic interactions
 - detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs)

Pathogen-Associated Molecular Patterns (PAMPs)

- Based on detection, by phagocytes, of conserved microbial molecular structures that occur in patterns
- PAMPs are unique to microbes, not present in host
 - e.g., lipopolysaccharide (LPS) of Gram-negative bacteria
 - e.g., peptidoglycan of Gram-positive bacteria
- PAMPs recognized by pattern recognition receptors (PRRs) on/in phagocytic cells
 - PRRs can work alone or together to trigger phagocytes

Toll-Like Receptors (TLRs)

- A class of PRRs that function exclusively as signaling receptors
- Recognize and bind unique PAMPs of viruses, bacteria, or fungi
 - the binding triggers an evolutionarily ancient signal and is communicated to the host cell nucleus which initiates the host response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Intracellular digestion

- Autophagy
 - Highly conserved process
 - Tags internal microbes for destruction
 - Ubiquitin protein labels item
 - Phagophore (free-floating, open membrane) encircles item
 - Autophagosome is fused with lysosome to degrade contained items

Intracellular Digestion

- Once bound, microbes can be internalized and delivered to a lysosome to become a phagosome
 - respiratory burst reactions occur once phagosome forms
 - toxic oxygen
 products are
 produced which can
 kill invading microbes

right © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Intracellular Digestion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.5Formation of Reactive Oxygen Intermediates	
Oxygen Intermediate	Reaction
Superoxide (O_2^{-})	$\begin{array}{c} NADPH \\ oxidase \\ NADPH + 2O_2 \xrightarrow{\bullet} PH^+ + NADP^+ \end{array}$
Hydrogen peroxide (H ₂ O ₂)	$2O_2 \overline{\bullet} + 2H^+ \xrightarrow{\text{Superoxide}} H_2O_2 + O_2$
Hypochlorous acid (HOCl)	$H_2O_2 + CI^- \xrightarrow{Myeloperoxidase} HOCI + OH^+$
Singlet oxygen (¹ O ₂)	$CIO^{-} + H_2O_2 \xrightarrow{\text{Peroxidase}} {}^{1}O_2 + CI^{-} + H_2O_2$
Hydroxyl radical (•OH⁻)	$O_2 \cdot + H_2 O_2 \xrightarrow{Peroxidase} 2 \cdot OH^- + O_2$

- phagolysosome
- vacuole which results from fusion of phagosome with lysosome
 - presence of toxic chemicals
 - e.g., degradative enzymes
 - e.g., toxic reactive oxygen intermediates (ROIs)
 - e.g., reactive nitrogen intermediates (RNIs)₇₄

Exocytosis

- Process used by neutrophils to expel microbial fragments after they have been digested
- Phagolysosome unites with cell membrane
 - results in extracellular release of microbial fragments
- Macrophages and dendritic cells undergo process called antigen presentation
 - move fragments from phagolysosome to endoplasmic reticulum
 - peptide fragment components combine with glycoproteins, becoming part of cell membrane
 - peptides bound so they are ultimately presented outward from the cell

Antigen Presentation

- Important process because it allows wandering lymphocytes to become activated
- Links nonspecific and specific immune responses

33.6 Inflammation

- 1. Outline the sequence of innate host responses that result in inflammation
- 2. Distinguish acute and chronic inflammation in terms of the host responses involved in each
- 3. Construct a concept map relating host cells and processes that remove pathogens

Inflammation

- Nonspecific response to tissue injury
 - can be caused by pathogen or physical trauma
 - acute inflammation is the immediate response of body to injury or cell death
- Cardinal signs
 - redness (rubor)
 - warmth (calor)
 - pain (dolor)
 - swelling (tumor)
 - altered function (functio laesa)

Acute Inflammatory Response

- The release of inflammatory mediators from injured tissue cells initiates a cascade of events which result in the signs of inflammation
- Involves chemical mediators
 - selectins
 - cell adhesion molecules on activated capillary endothelial cells
 - integrins
 - adhesion receptors on neutrophils
 - chemotaxins
 - chemotactic factors released by injured cells

Acute Inflammatory Response

- Various processes occur
 - margination
 - diapedesis
 - extravasion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More about Acute Inflammation...

- Tissue injury releases kalikrein and other mediators
 - increases capillary dilation and blood flow
 - brings more antimicrobial factors and leukocytes that kill pathogens
- Fibrin clot may restrict pathogen movement
- Phagocytes accumulate in inflamed area and destroy pathogens
- Bone marrow stimulated to release neutrophils and increase rate of granulocyte production

Chronic Inflammation

- Slow process
- Involves formation of new connective tissue
- Usually causes permanent tissue damage
- Dense infiltration of lymphocytes and macrophages at site of inflammation
 - granuloma
 - walled off area
 - formed when phagocytic cells can't destroy pathogen

Macrophage and lymphocyte infiltration