
Innate Host Resistance

33.4 Cells, Tissues, and Organs of the Immune System

- 1. Recognize the different types of leukocytes involved with innate resistance
- 2. Outline the leukocyte response to microbial invasion
- 3. Integrate leukocyte distribution within the host with host resistance
- 4. Differentiate between primary and secondary lymphoid organs and tissues in terms of structure and function
- 5. Predict connections between innate host resistance and specific immune responses

Cells of the Immune System

- Granulocytes
- Mast cells
- Monocytes and macrophages
- Dendritic cells
- Lymphocytes
- Each has specialized role in defending host
- Leukocytes
 - white blood cells
 - involved in both specific and nonspecific immunity
 - all arise from pluripotent stem cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.4 Normal Adult Blood Count		
Cell Type	Cells/mm ³	Percent WBC
Red blood cells	5,000,000	
Platelets	250,000	
White blood cells	7,400	100
Neutrophils	4,320	60
Lymphocytes	2,160	30
Monocytes	430	6
Eosinophils	215	3
Basophils	70	1

Mast Cells

- Bone marrow-derived cells
- Differentiate in blood and connective tissue
- Contain granules containing histamine and other pharmacologically active chemicals
- Play important role in development of allergies and hypersensitivities

Granulocytes

- Irregularly-shaped nuclei with two to five lobes
- Cytoplasm has granules with reactive substances
 - kill microbes, enhance inflammation
- Three types
 - basophils, eosinophils, neutrophils
 (polymorphonuclear neutrophil (PMN))

Basophils

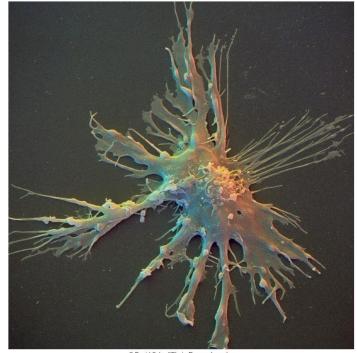
- Stain bluish-black with basic dyes
- Nonphagocytic
- Release vasoactive mediators
 - e.g., histamine, prostaglandins, serotonin, and leukotrienes from granules
- Play important role in development of allergies and hypersensitivities

Eosinophils

- Stain red with acidic dyes
- Defend against protozoan and helminth parasites
- Release cationic proteins and reactive oxygen metabolites
- May play a role in allergic reactions

Neutrophils

- Stain at neutral pH
- Highly phagocytic
- Circulate in blood then migrate to sites of tissue damage
- Kill ingested microbes with lytic enzymes and reactive oxygen metabolites contained in primary and secondary granules


Monocytes and Macrophages

- Highly phagocytic cells
- Monocytes
 - are mononuclear phagocytic leukocytes
 - after circulating for ~8 hours, mature into macrophages
- Macrophages
 - larger than monocytes, reside in specific tissues, highly phagocytic
 - have a variety of surface receptors (including pattern recognition receptors)
 - bind pathogen associated molecular patterns (PAMPs)
 - named according to tissue in which they reside

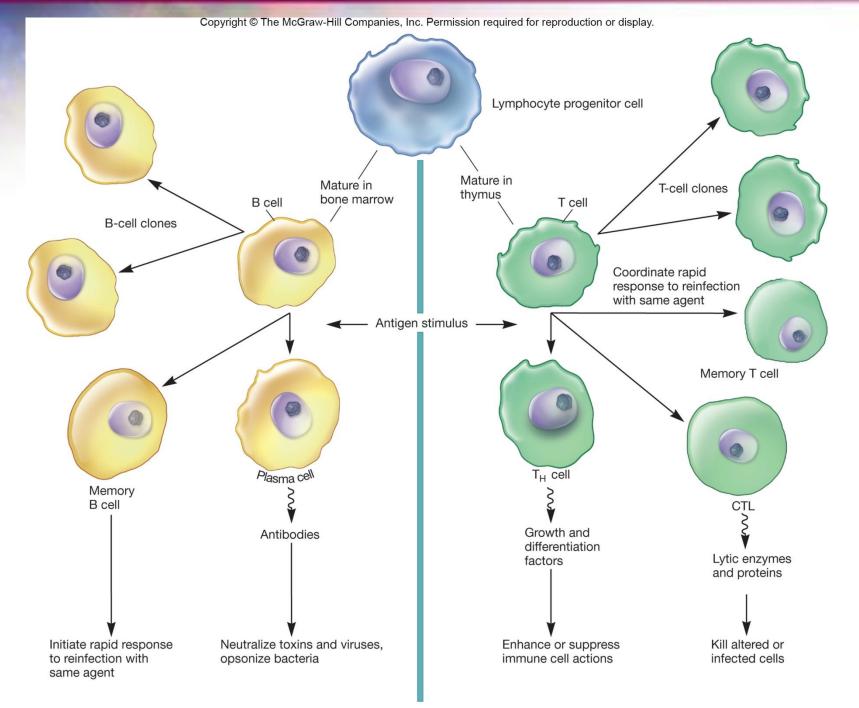
Dendritic Cells

- Heterogeneous group of cells with neuron-like appendages
 - from lymphoid and myeloid lines
- Present in small numbers in blood, skin, and mucous membranes of nose, lungs, and intestines
 - also express pattern recognition receptors
 - contact, phagocytose, and process antigens → display foreign antigens on their surfaces (antigen presentation)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

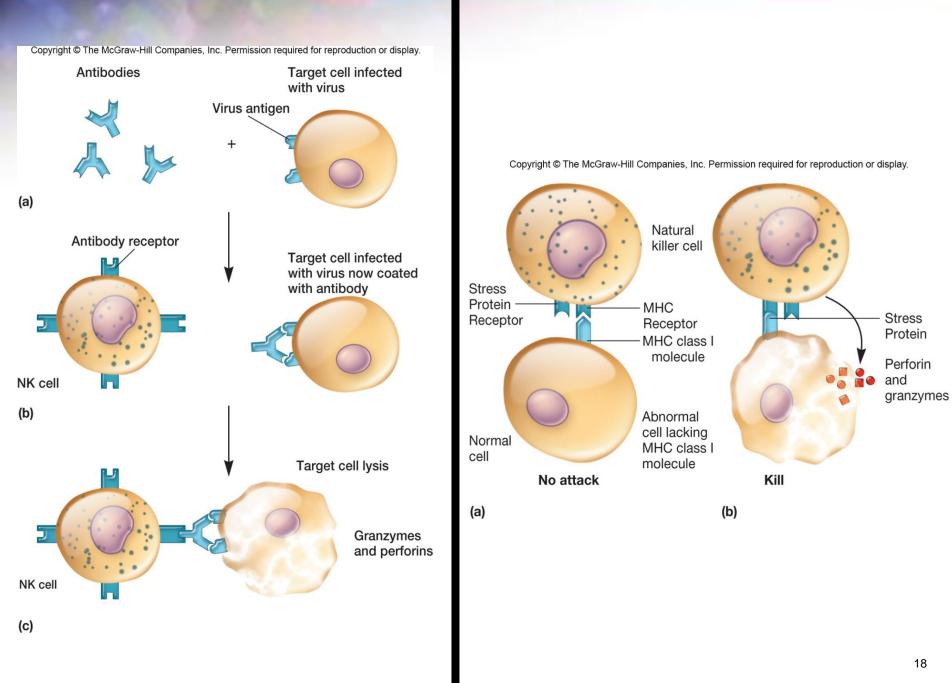
© David Scharf/Photo Researchers, Inc

Lymphocytes


- Major cells of the immune system
- Major populations include T cells, B cells, and natural killer (NK) cells
- B and T lymphocytes differentiate in bone marrow from stem cells
 - are only activated by binding of specific antigen onto lymphocyte surface receptors
 - after activation replication continues as lymphocytes circulate and enter lymphoid tissue
 - memory cells are activated lymphocytes that do not immediately replicate, but will do so later in host's life when antigen is again present

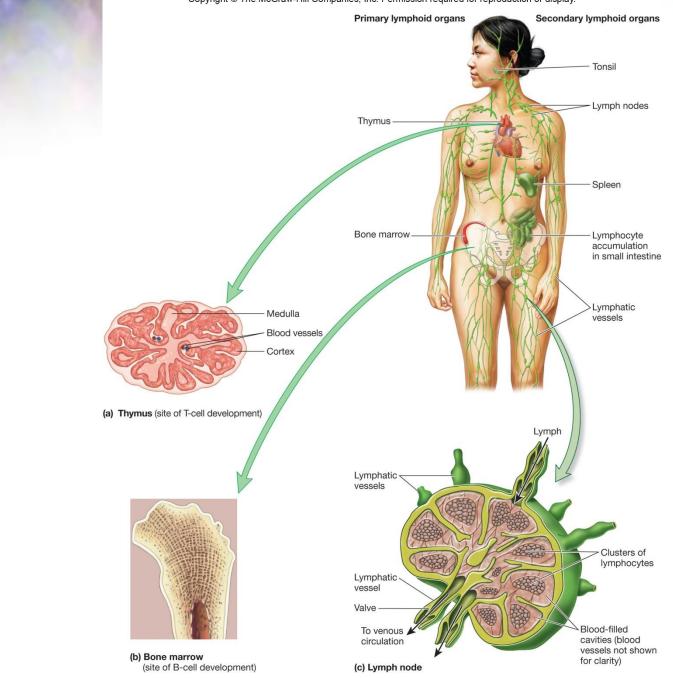
B Lymphocytes

- B cells (B lymphocytes)
 - mature in bone marrow
 - circulate in blood
 - can settle in lymphoid organs
 - after maturation and activation are called plasma cells and produce antibodies


T Lymphocytes (T cells)

- Mature in thymus
- Can remain in thymus, circulate in blood, or reside in lymphoid tissue
- Like B cells, require antigen binding to surface receptors for activation and continuation of replication
- Activated T cells differentiate into helper T cells (TH) and cytotoxic lymphocytes (CTLs)
- Secrete cytokines, chemicals that have effects on other cells, are produced and secreted by activated T cells

Natural Killer (NK) Cells


- Small population of large non-phagocytic granular lymphocytes
 - important role in innate immunity
 - kill malignant cells and cells infected with pathogens by releasing granzymes (cytotoxic enzymes)
- Two ways of recognizing target cells
 - bind to antibodies which coat infected or malignant cells (antibody-dependent cell-mediated cytotoxicity (ADCC)
 - recognizes cells that have lost their class I major histocompatibility antigen due to presence of virus or cancer

Organs and Tissues of the Immune System

- Primary organs and tissues
 - sites where lymphocytes mature and differentiate into antigen-sensitive mature B and T cells
- Secondary organs and tissues
 - areas where lymphocytes may encounter and bind antigen
 - followed by proliferation and differentiation into fully mature effector cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Primary Lymphoid Organs and Tissues

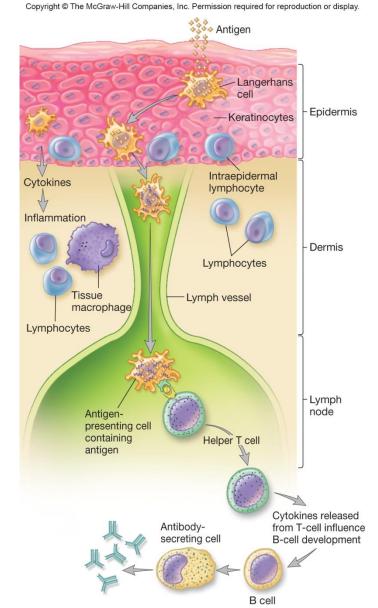
- Thymus
 - precursor cells move enter from bone marrow and proliferate
 - thymic deletion removes T cells recognizing self antigens
 - remaining cells become mature T cells
 - enter bloodstream and recognize nonself antigens
- Bone marrow
 - site of B cell maturation in mammals
 - maturation involves removal of nonfunctioning and self-reactive cells

Secondary Lymphoid Organs and Tissues

- Spleen
 - most highly organized lymphoid organ
 - filters blood
 - macrophages and dendritic cells trap microbes and antigens
 - present antigens to B and T cells
 - most common way that lymphocytes become activated to carry out their immune functions

Secondary Lymphoid Organs and Tissues

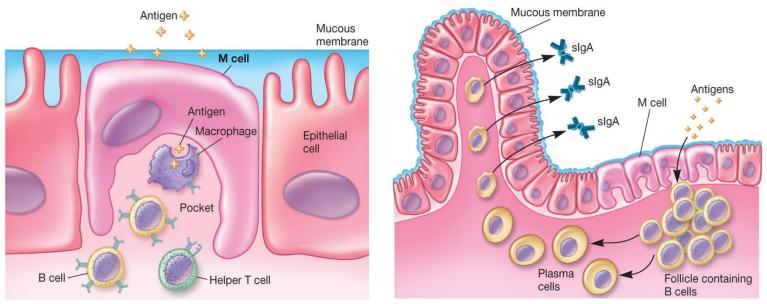
- Lymph nodes
 - most highly organized lymphoid tissue
 - filter lymph
 - microbes and antigens trapped and phagocytosed by macrophages and dendritic cells
 - B cells differentiate into memory and plasma cells within lymph nodes


Secondary Lymphoid Organs and Tissues

- Lymphoid tissue
 - located throughout the body
 - serve as interface between innate and acquired host immunity
 - act as areas of antigen sampling and processing
 - some lymphoid cells are found closely associated with specific tissues
 - e.g., skin-associated lymphoid tissue (SALT)
 - e.g., mucous-associated lymphoid tissue (MALT)

Skin Associated Lymphoid Tissue

(SALT)


- Contains specialized cells
 - Langerhans cell
 - dendritic cell that can phagocytose antigens
 - differentiates into interdigitating dendritic cell – presents antigen to and activates T cells
 - intraepidermal
 lymphocyte
 - function as T cells

Mucosal-Associated Lymphoid Tissue (MALT)

- Specialized immune barrier
 - gut-associated lymphoid tissue (GALT)
 - bronchial-associated lymphoid tissue (BALT)
 - urogenital system MALT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33.5 Phagocytosis

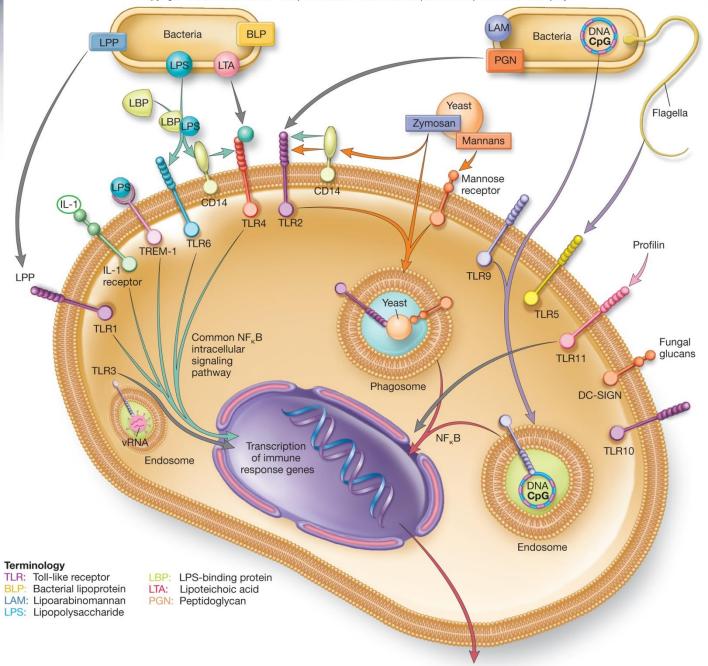
- 1. Explain the methods by which pathogens are recognized by phagocytes
- 2. Describe the process of autophagy and phagocytosis
- 3. Forecast how biochemical activities within the phagocyte result in pathogen destruction

Phagocytosis

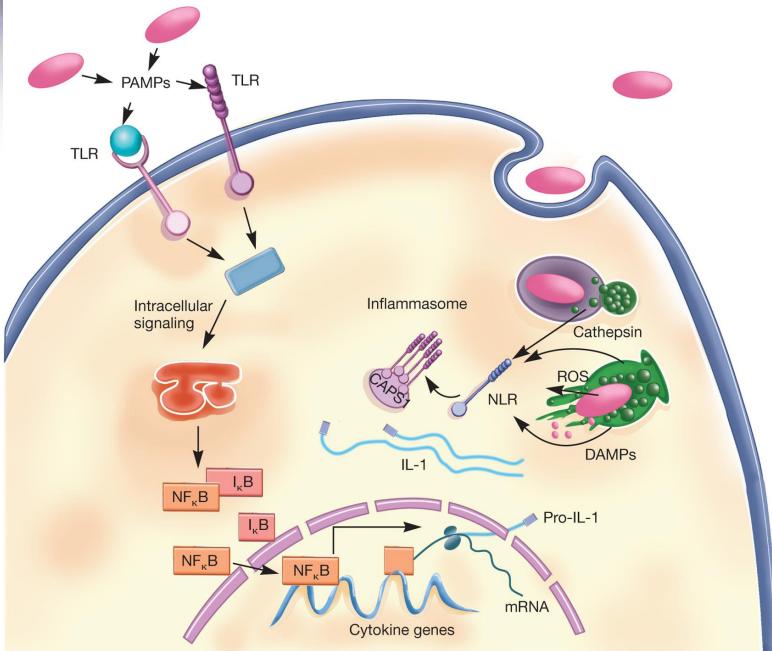
- Process by which phagocytic cells (monocytes, tissue macrophages, dendritic cells, and neutrophils) recognize, ingest, and kill extracellular microbes
- Two mechanisms for recognition of microbe by phagocyte
 - opsonin-independent (nonopsonic) recognition
 - opsonin-dependent (opsonic) recognition
- Phagocytosis can be greatly increased by opsonization

Pathogen Recognition

- Opsonin-independent mechanism
 - pathogen recognition
 - common pathogen components are non-specifically recognized to activate phagocytes
 - signaling mechanism involved
 - involves nonspecific/specific receptors on phagocytes
 - four main forms:
 - recognition by lectin-carbohydrate interactions
 - recognition by protein-protein interactions
 - recognition by hydrophobic interactions
 - detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs)

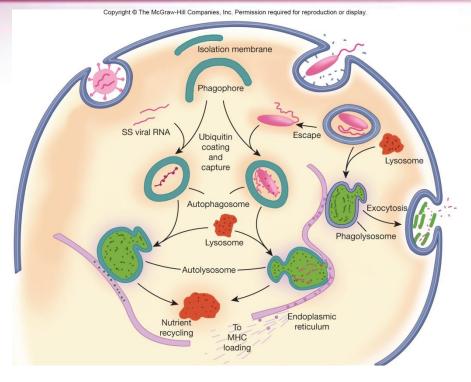

Pathogen-Associated Molecular Patterns (PAMPs)

- Based on detection, by phagocytes, of conserved microbial molecular structures that occur in patterns
- PAMPs are unique to microbes, not present in host
 - e.g., lipopolysaccharide (LPS) of Gram-negative bacteria
 - e.g., peptidoglycan of Gram-positive bacteria
- PAMPs recognized by pattern recognition receptors (PRRs) on/in phagocytic cells
 - PRRs can work alone or together to trigger phagocytes

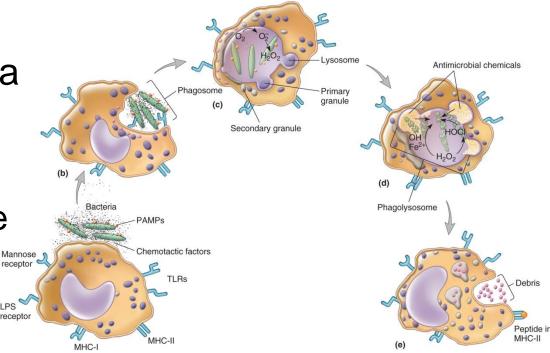

Toll-Like Receptors (TLRs)

- A class of PRRs that function exclusively as signaling receptors
- Recognize and bind unique PAMPs of viruses, bacteria, or fungi
 - the binding triggers an evolutionarily ancient signal and is communicated to the host cell nucleus which initiates the host response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Intracellular digestion

- Autophagy
 - Highly conserved process
 - Tags internal microbes for destruction
 - Ubiquitin protein labels item
 - Phagophore (free-floating, open membrane) encircles item
 - Autophagosome is fused with lysosome to degrade contained items

Intracellular Digestion

- Once bound, microbes can be internalized and delivered to a lysosome to become a phagosome
 - respiratory burst reactions occur once phagosome forms
 - toxic oxygen
 products are
 produced which can
 kill invading microbes

right © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Intracellular Digestion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 33.5Formation of Reactive Oxygen Intermediates		
Oxygen Intermediate	Reaction	
Superoxide (O ₂ •)	$\begin{array}{c} NADPH \\ oxidase \\ NADPH + 2O_2 \xrightarrow{\bullet} P O_2 \xrightarrow{\bullet} P O_2 \xrightarrow{\bullet} O_2 O_2 \xrightarrow{\bullet} O_2 O_2 \xrightarrow{\bullet} O_2 O_2 \overset{\bullet} O_2 O_2 O_2 \overset{\bullet} O_2 $	
Hydrogen peroxide (H ₂ O ₂)	$2O_2 \overline{\bullet} + 2H^+ \xrightarrow{\text{Superoxide}} H_2O_2 + O_2$	
Hypochlorous acid (HOCl)	$H_2O_2 + CI^- \xrightarrow{Myeloperoxidase} HOCI + OH^+$	
Singlet oxygen (¹ O ₂)	$CIO^{-} + H_2O_2 \xrightarrow{\text{Peroxidase}} {}^1O_2 + CI^{-} + H_2O_2$	
Hydroxyl radical (•OH [–])	$O_2 \cdot + H_2 O_2 \xrightarrow{\text{Peroxidase}} 2 \cdot OH^- + O_2$	

- phagolysosome
- vacuole which results from fusion of phagosome with lysosome
 - presence of toxic chemicals
 - e.g., degradative enzymes
 - e.g., toxic reactive oxygen intermediates (ROIs)
 - e.g., reactive nitrogen intermediates (RNIs)₃₆

Exocytosis

- Process used by neutrophils to expel microbial fragments after they have been digested
- Phagolysosome unites with cell membrane
 - results in extracellular release of microbial fragments
- Macrophages and dendritic cells undergo process called antigen presentation
 - move fragments from phagolysosome to endoplasmic reticulum
 - peptide fragment components combine with glycoproteins, becoming part of cell membrane
 - peptides bound so they are ultimately presented outward from the cell

Antigen Presentation

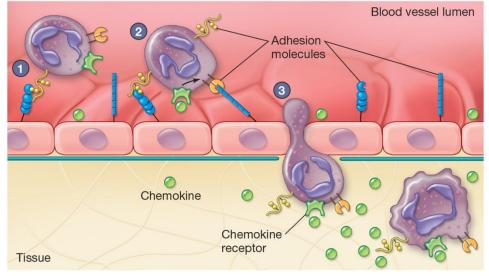
- Important process because it allows wandering lymphocytes to become activated
- Links nonspecific and specific immune responses

33.6 Inflammation

- 1. Outline the sequence of innate host responses that result in inflammation
- 2. Distinguish acute and chronic inflammation in terms of the host responses involved in each
- 3. Construct a concept map relating host cells and processes that remove pathogens

Inflammation

- Nonspecific response to tissue injury
 - can be caused by pathogen or physical trauma
 - acute inflammation is the immediate response of body to injury or cell death
- Cardinal signs
 - redness (rubor)
 - warmth (calor)
 - pain (dolor)
 - swelling (tumor)
 - altered function (functio laesa)

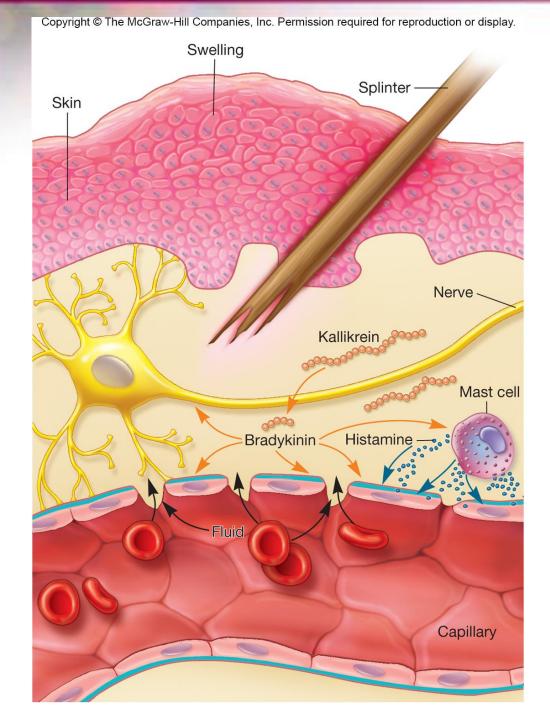

Acute Inflammatory Response

- The release of inflammatory mediators from injured tissue cells initiates a cascade of events which result in the signs of inflammation
- Involves chemical mediators
 - selectins
 - cell adhesion molecules on activated capillary endothelial cells
 - integrins
 - adhesion receptors on neutrophils
 - chemotaxins
 - chemotactic factors released by injured cells

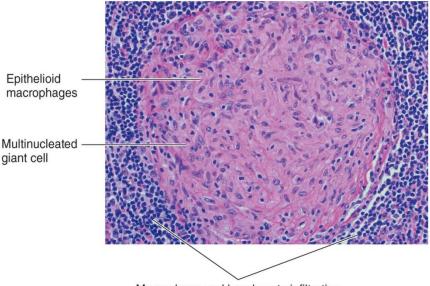

Acute Inflammatory Response

- Various processes occur
 - margination
 - diapedesis
 - extravasion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


More about Acute Inflammation...

- Tissue injury releases kalikrein and other mediators
 - increases capillary dilation and blood flow
 - brings more antimicrobial factors and leukocytes that kill pathogens
- Fibrin clot may restrict pathogen movement
- Phagocytes accumulate in inflamed area and destroy pathogens
- Bone marrow stimulated to release neutrophils and increase rate of granulocyte production

Chronic Inflammation

- Slow process
- Involves formation of new connective tissue
- Usually causes permanent tissue damage
- Dense infiltration of lymphocytes and macrophages at site of inflammation
 - granuloma
 - walled off area
 - formed when phagocytic cells can't destroy pathogen

Macrophage and lymphocyte infiltration