Foundations in Microbiology

Fifth Edition

Talaro

Chapter

11

Physical and Chemical Control of Microbes

Control of microbes

Physical and chemical methods to destroy or reduce microbes in a given area

Relative resistance of microbes

- Highest resistance
 - Bacterial endospores
- Moderate resistance
 - Pseudomonas sp.
 - Mycobacterium tuberculosis
 - Staphylococcus aureus
 - Protozoan cysts
- Least resistance
 - most vegetative cells
 - Fungal spores
 - enveloped viruses
 - Yeast
 - Protozoan trophozoites

Terms

- Sterilization a process that destroys all viable microbes, including viruses & endospores
- Disinfection a process to destroy vegetative pathogens, not endospores
- Sanitization any cleansing technique that mechanically removes microbes

Microbial death

• Involves permanent loss of reproductive capability, even under optimum growth conditions

Factors that influence action of antimicrobial agents:

- 1. Number of microbes
- 2. Nature of microbes in the population
- 3. Temperature & pH of environment
- 4. Concentration or dosage of agent
- 5. Mode of action of the agent
- 6. Presence of solvents, organic matter, or inhibitors

Cellular targets of control

- 1. Cell wall
- 2. Cell membrane
- 3. Cellular synthetic processes (DNA, RNA)
- 4. Proteins

Practical concerns

- Does the application require sterilization?
- Is the item to be reused?
- Can the item withstand heat, pressure, radiation, or chemicals?
- Is the method suitable?
- Will the agent penetrate to the necessary extent?
- Is the method cost- and labor-efficient & is it safe?

Methods of Physical Control

- 1. Heat
- 2. Cold temperatures
- 3. Desiccation
- 4. Radiation
- 5. Filtration

1. Heat

Moist heat – use of hot water or steam

- A. Mode of action denaturation of proteins, destruction of membranes & DNA
 - sterilization
 - autoclave 20 psi/121°C/20 min
 - intermittent sterilization unpressurized steam at 100°C 30-60 min for 3 days
 - disinfection
 - **Pasteurization** <100°C for seconds; kills *Salmonella*, *Listeria* & overall microbe count
 - **Boiling** at 100°C for 30 minutes to destroy non-spore-forming pathogens

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

Autoclaving

Video

1. Heat

- **B. Dry heat** using higher temperatures than moist heat, can also sterilize
 - incineration 600-1200°C combusts
 & dehydrates cells
 - dry ovens 150-180°C- coagulate proteins

Dry heat Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2. Cold temperatures

- Microbistatic slows the growth of microbes
 - refrigeration 0-15°C & freezing <0°C
 - used to preserve food, media and cultures

3. Desiccation

- gradual removal of water from cells, leads to metabolic inhibition
- not effective microbial control many cells retain ability to grow when water is reintroduced

4. Radiation

- 1. Ionizing radiation deep penetrating power, breaks DNA,
 - gamma rays, X-rays, cathode rays
 - used to sterilize medical supplies & food products
- 2. Nonionizing radiation little penetrating power to sterilize air, water & solid surfaces
 - uv light
 - creates thymine pyrmidines, which interfere with replication

5. Filtration

• physical removal of microbes by passing a gas or liquid through filter

 used to sterilize heat sensitive liquids & air in hospital isolation units & industrial clean rooms

Filtration

Chemical Control

- 1. Halogens
- 2. Phenolics
- 3. Chlorhexidine
- 4. Alcohols
- 5. Hydrogen peroxide
- 6. Detergents & soaps
- 7. Heavy metals
- 8. Aldehydes

1. Halogens

- Chlorine Cl₂, hypochlorites (chlorine bleach), chloramines
 - Denaturation of proteins by disrupting disulfide bonds
 - Can be sporicidal
- Iodine I₂, iodophors (betadine)
 - Denature proteins
 - Can be sporicidal
 - Milder medical & dental degerming agents, disinfectants, ointments

2. Phenolics

- Disrupt cell membranes & precipitating proteins; bactericidal, fungicidal, virucidal, not sporicidal
 - Lysol
 - triclosan- antibacterial additive to soaps

3. Chlorhexidine

- Hibiclens, Hibitane
- A surfactant & protein denaturant with broad microbicidal properties
- Not sporicidal
- Used as skin degerming agents for preoperative scrubs, skin cleaning & burns

4. Alcohols

- Ethyl, isopropyl in solutions of 50-90%
- Act as surfactants dissolving membrane lipids and coagulating proteins of vegetative bacterial cells and fungi
- Not sporicidal

5. Hydrogen peroxide

- Weak (3%) to strong (25%)
- Produce highly reactive hydroxyl-free radicals that damage protein & DNA while also decomposing to O₂ gas – toxic to anaerobes
- Strong solutions are sporicidal

6. Detergents & soaps

- Quaternary ammonia compounds act as surfactants that alter membrane permeability of some bacteria & fungi
 - Not sporicidal
- Soaps- mechanically remove soil and grease containing microbes

7. Heavy metals

- Solutions of silver & mercury kill vegetative cells in low concentrations by inactivating proteins
- Oligodynamic action
- Not sporicidal

8. Aldehydes

- Glutaraldehyde & formaldehyde kill by alkylating protein & DNA
- glutaraldehyde in 2% solution (Cidex) used as sterilant for heat sensitive instruments
- formaldehyde disinfectant, preservative, toxicity limits use

Gases & aerosols

- Ethylene oxide, propylene oxide, betapropiolactone & chlorine dioxide
- Strong alkylating agents, sporicidal

When germ relationships go bad